scispace - formally typeset
Search or ask a question
Topic

Markov random field

About: Markov random field is a research topic. Over the lifetime, 5669 publications have been published within this topic receiving 179568 citations. The topic is also known as: MRF.


Papers
More filters
Book ChapterDOI
26 Jun 2000
TL;DR: A novel observation density for the particle filter which models the statistical dependence of neighboring pixels based on a Markov random field is presented, and the effectiveness of both the low level process and the observation likelihood are demonstrated.
Abstract: A new probabilistic background model based on a Hidden Markov Model is presented. The hidden states of the model enable discrimination between foreground, background and shadow. This model functions as a low level process for a car tracker. A particle filter is employed as a stochastic filter for the car tracker. The use of a particle filter allows the incorporation of the information from the low level process via importance sampling. A novel observation density for the particle filter which models the statistical dependence of neighboring pixels based on a Markov random field is presented. The effectiveness of both the low level process and the observation likelihood are demonstrated.

195 citations

Journal ArticleDOI
TL;DR: The hybrid joint-separable HJS filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation and able to resolve long-term occlusions between targets with identical appearance.
Abstract: Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting principled occlusion reasoning have been proposed but are yet unpractical for online applications. This paper presents a new solution which effectively manages the trade-off between reliable modeling and computational efficiency. The hybrid joint-separable (HJS) filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation. Computational efficiency is achieved by employing a Markov random field approximation to joint dynamics and an incremental algorithm for posterior update with an appearance likelihood that implements a physically-based model of the occlusion process. A particle filter implementation is proposed which achieves accurate tracking during partial occlusions, while in cases of complete occlusion, tracking hypotheses are bound to estimated occlusion volumes. Experiments show that the proposed algorithm is efficient, robust, and able to resolve long-term occlusions between targets with identical appearance

195 citations

Journal ArticleDOI
TL;DR: A global contour model based on a stable and regenerative shape matrix, which is invariant and unique under rigid motions is proposed, which yields prior distribution that exerts influence over a global model while allowing for deformations.
Abstract: This paper considers the problem of modeling and extracting arbitrary deformable contours from noisy images. We propose a global contour model based on a stable and regenerative shape matrix, which is invariant and unique under rigid motions. Combined with Markov random field to model local deformations, this yields prior distribution that exerts influence over a global model while allowing for deformations. We then cast the problem of extraction into posterior estimation and show its equivalence to energy minimization of a generalized active contour model. We discuss pertinent issues in shape training, energy minimization, line search strategies, minimax regularization and initialization by generalized Hough transform. Finally, we present experimental results and compare its performance to rigid template matching. >

189 citations

Journal ArticleDOI
TL;DR: This article addresses the problem of inferring multiple undirected networks in situations where some of the networks may be unrelated, while others share common features, and proposes a Bayesian approach to inference on multiple Gaussian graphical models.
Abstract: In this article, we propose a Bayesian approach to inference on multiple Gaussian graphical models. Specifically, we address the problem of inferring multiple undirected networks in situations where some of the networks may be unrelated, while others share common features. We link the estimation of the graph structures via a Markov random field (MRF) prior, which encourages common edges. We learn which sample groups have a shared graph structure by placing a spike-and-slab prior on the parameters that measure network relatedness. This approach allows us to share information between sample groups, when appropriate, as well as to obtain a measure of relative network similarity across groups. Our modeling framework incorporates relevant prior knowledge through an edge-specific informative prior and can encourage similarity to an established network. Through simulations, we demonstrate the utility of our method in summarizing relative network similarity and compare its performance against related methods. We ...

189 citations

Proceedings Article
01 Jan 2008
TL;DR: The proposed method is applied to accelerate the cleanup step of a real-time dense stereo method based on plane sweeping with multiple sweeping directions, where the label set directly corresponds to the employed directions.
Abstract: This work presents a real-time, data-parallel approach for global label assignment on regular grids. The labels are selected according to a Markov random field energy with a Potts prior term for binary interactions. We apply the proposed method to accelerate the cleanup step of a real-time dense stereo method based on plane sweeping with multiple sweeping directions, where the label set directly corresponds to the employed directions. In this setting the Potts smoothness model is suitable, since the set of labels does not possess an intrinsic metric or total order. The observed run-times are approximately 30 times faster than the ones obtained by graph cut approaches.

188 citations


Network Information
Related Topics (5)
Image segmentation
79.6K papers, 1.8M citations
94% related
Convolutional neural network
74.7K papers, 2M citations
93% related
Feature extraction
111.8K papers, 2.1M citations
92% related
Image processing
229.9K papers, 3.5M citations
91% related
Deep learning
79.8K papers, 2.1M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202330
2022128
202196
2020173
2019204