scispace - formally typeset
Search or ask a question
Topic

Mask inspection

About: Mask inspection is a research topic. Over the lifetime, 1072 publications have been published within this topic receiving 8696 citations.


Papers
More filters
Proceedings ArticleDOI
25 May 2010
TL;DR: In this paper, the influence of EUV absorber design for 193nm optical contrast and defect sensitivity is identified for absorber designs of current interest and illustrated inspection technology extendibility through simulation of 193nm-based inspection of advanced EUV patterned masks.
Abstract: Reticle quality and the capability to qualify a reticle are key issues for EUV Lithography. We expect current and planned optical inspection systems will provide inspection capability adequate for development and production of 2X HP masks. We illustrate inspection technology extendibility through simulation of 193nm-based inspection of advanced EUV patterned masks. The influence of EUV absorber design for 193nm optical contrast and defect sensitivity will be identified for absorber designs of current interest.

10 citations

Patent
28 Feb 1990
TL;DR: In this article, a method of detecting defects in a lithography mask by exposing a first mask onto a positive resist and a second, ostensibly identical mask on a negative resist was proposed.
Abstract: A method of detecting defects in a lithography mask by exposing a first mask onto a positive resist, and a second, ostensibly identical mask onto a negative resist. Remaining particles of resist after development correspond to spots in the first mask, or to holes in the second mask. The process may be repeated with the tones of the resists reversed to detect holes in the first mask, or spots in the second mask.

10 citations

Proceedings ArticleDOI
24 Oct 2008
TL;DR: In this paper, a binary-type attenuated phase shift film is proposed to improve the ability to inspect smaller critical dimensions and smaller OPC features without loss of inspectability and sensitivity extending the capability of existing inspection hardware for 32nm ground rule masks.
Abstract: Aggressive optical proximity correction (OPC) has enabled the extension of advanced lithographic technologies to the 32nm node. The associated sub-resolution features, feature-feature spacings, and fragmented edges in the design data are difficult to reproduce on masks and even more difficult to inspect. The patterns themselves must be differentiated from defects for inspectability, while the ability to recognize small deviations must be maintained for sensitivity. This must be done without restricting necessary OPC design features. The semi-transparent nature of industry-standard 6% attenuated phase shift substrates introduces a host of problems relative to inspectable dimensions and subsequent defect sensitivities. The result is a reduction in inspectability, defect sensitivity and the inability to inspect smaller critical dimensions and OPCed features. The introduction of a binary-type attenuated phase shift film improves the ability to inspect smaller critical dimensions and smaller OPC features without loss of inspectability and sensitivity extending the capability of existing inspection hardware for 32nm ground rule masks. This paper introduces inspection characterization results for this new film, opaque MoSi on glass (referred to as OMOG in this paper) and draws a correlation between the film’s transmission qualities and inspectability of 32nm OPC features. The paper will further show a correlation between OPC feature size and defect sensitivity for 32nm ground rule designs. Aerial Image (AIMS) analysis will be used to identify areas where the enhanced inspection capability can be leveraged to avoid unnecessary restrictions on OPC. Keywords: Mask Inspection, OPC, MRC, attenuator, AIMS

9 citations

Proceedings ArticleDOI
TL;DR: In this paper, an optical wafer defect inspection system employing a methodology termed Die-to-Golden Virtual Reference Die (D2VRD) was proposed to detect mask adder defects.
Abstract: The detection of EUV mask adder defects has been investigated with an optical wafer defect inspection system employing a methodology termed Die-to-“golden” Virtual Reference Die (D2VRD). Both opaque and clear type mask absorber programmed defects were inspected and characterized over a range of defect sizes, down to (4x mask) 40 nm. The D2VRD inspection system was capable of identifying the corresponding wafer print defects down to the limit of the defect printability threshold at approximately 30 nm (1x wafer). The efficacy of the D2VRD scheme on full chip wafer inspection to suppress random process defects and identify real mask defects is demonstrated. Using defect repeater analysis and patch image classification of both the reference die and the scanned die enables the unambiguous identification of mask adder defects.

9 citations

Proceedings ArticleDOI
23 Mar 2020
TL;DR: This paper demonstrates that actinic inspection provides defect detection capability beyond the traditional DUV optical and e-beam mask inspection (EBMI) tools for defect control and the guaranty of mask quality.
Abstract: With the persistent drive to enable EUV lithography (EUVL) for the continuation of pattern scaling and the close collaborations between suppliers and customers, tremendous progress has been made in the last five years in EUV mask infrastructure development. With the advent of actinic pattern mask inspection (APMI) tool, the only remaining EUV mask infrastructure gap until recently has been closed. We will present real-case examples from inspection of 7nm and 5nm logic node EUV masks with APMI in operation at Intel mask shop and demonstrate that actinic inspection provides defect detection capability beyond the traditional DUV optical and e-beam mask inspection (EBMI) tools for defect control and the guaranty of mask quality. In addition to the main focus on APMI and through-pellicle inspection in this paper, we also provide a brief discussion of other key EUV infrastructure modules for mask production in current EUVL at 0.33NA and future technology extension to enable high NA EUVL at 0.55NA.

9 citations

Network Information
Related Topics (5)
Wafer
118K papers, 1.1M citations
78% related
Etching (microfabrication)
85.7K papers, 890.7K citations
72% related
Photonic crystal
43.4K papers, 887K citations
72% related
Chemical vapor deposition
69.7K papers, 1.3M citations
71% related
Integrated circuit
82.7K papers, 1M citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202110
202016
201924
201819
201727
201632