scispace - formally typeset
Search or ask a question
Topic

Mass segregation

About: Mass segregation is a research topic. Over the lifetime, 1024 publications have been published within this topic receiving 57729 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the binary star fraction as a function of radius in NGC 1818, a young rich cluster in the Large Magellanic Cloud, was determined using Hubble Space Telescope images in bands F336W (∼U) and F555W(∼V).
Abstract: We determine the binary star fraction as a function of radius in NGC 1818, a young rich cluster in the Large Magellanic Cloud, using Hubble Space Telescope images in bands F336W (∼U) and F555W (∼V). Our sample includes binaries with Mprimary ∼ 2–5.5 M⊙ and Msecondary ≳ 0.7 Mprimary. The binary fraction increases towards the cluster centre, from ∼ 20 ± 5 per cent in the outer parts, to ∼ 35 ± 5 per cent inside the core. This increase is consistent with dynamical mass segregation and need not be primordial. We compare our results with expectations from N-body models, and discuss the implications for the formation and early evolution of such clusters.

80 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the results of their ongoing radial-velocity (RV) survey of the old (7 Gyr) open cluster NGC 188, which spans a time baseline of 11 years, a magnitude range of 12<=V<=16.5 (1.18-0.94 MSun), and a 1 deg. diameter region on the sky.
Abstract: (Abridged) We present the results of our ongoing radial-velocity (RV) survey of the old (7 Gyr) open cluster NGC 188. Our WIYN 3.5m data set spans a time baseline of 11 years, a magnitude range of 12<=V<=16.5 (1.18-0.94 MSun), and a 1 deg. diameter region on the sky. With the addition of a Dominion Astrophysical Observatory (DAO) data set we extend our bright limit to V = 10.8 and, for some stars, extend our time baseline to 35 years. Our magnitude limits include solar-mass main-sequence stars, subgiants, giants, and blue stragglers (BSs), and our spatial coverage extends radially to 17 pc (~13 core radii). For the WIYN data we find a measurement precision of 0.4 km/s for narrow-lined stars. We have measured RVs for 1046 stars in the direction of NGC 188, finding 473 to be likely cluster members. We detect 124 velocity-variable cluster members, all of which are likely to be dynamically hard-binary stars. Using our single member stars, we find an average cluster RV of -42.36 +/- 0.04 km/s. We use our precise RV and proper-motion membership data to greatly reduce field-star contamination in our cleaned color-magnitude diagram, from which we identify six stars of note that lie far from a standard single-star isochrone. We find the binaries to be centrally concentrated, providing evidence for the presence of mass segregation in NGC 188. We observe the BSs to populate a bimodal spatial distribution that is not centrally concentrated, suggesting that we may be observing two populations of BSs in NGC 188, including a centrally concentrated distribution as well as a halo population. Finally, we find NGC 188 to have a global RV dispersion of 0.64 +/- 0.04 km/s. When corrected for unresolved binaries, the NGC 188 RV dispersion has a nearly isothermal radial distribution. We use this mean-corrected velocity dispersion to derive a virial mass of 2300 +/- 460 MSun.

79 citations

01 Jan 1998
TL;DR: A survey of results concerning the IMF derived from star counts is presented, including work up to, but not including, that pre- sented in these proceedings as discussed by the authors, with an emphasis on the sources of uncertainty.
Abstract: A survey of results concerning the IMF derived from star counts is presented, including work up to, but not including, that pre- sented in these proceedings. The situation regarding low-mass stars in the field and in clusters, high-mass stars and intermediate-mass stars in clusters and associations of the Milky Way and LMC, pre-main sequence objects in visible and embedded clusters, and the IMF in galaxies more distant than the Magellanic Clouds is discussed, with an emphasis on the sources of uncertainty. Most of these uncertainties, especially radial mass segregation and unresolved binaries, would steepen the true IMF relative to the apparent IMF. Several cases of apparently large variations in cluster IMFs are pointed out, and a graphical comparison of results for about 60 clusters shows a spread of at least unity in the logarithmic IMF index for all mass ranges above about 1 M ⊙ . I conclude that either: 1. The uncertainties are so large that very little can be said about an average IMF or IMF variations; or 2. If the observations are taken at face value, there are strong indications of IMF variations, which do not seem to correlate with obvious environmental conditions like metallicity or stellar density. If there is an average IMF, I suggest that it is steepest at intermediate masses. If the variations are real, they offer a useful test of theoretical models.

79 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M• 5×10 6 M� (i.e. nuclei in the range of LISA), and investigate the regime of strong mass segregation (SMS) for models with two different stellar mass components.
Abstract: One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an ‘extreme-mass ratio inspiral’ (EMRI). The small object, typically a stellar black hole, emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map spacetime around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic centre revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp, or core) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation N-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker–Planck code. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M• 5×10 6 M� (i.e. nuclei in the range ofLISA). We then investigate the regime of strong mass segregation (SMS) for models with two different stellar mass components. Given the most recent stellar mass normalization for the inner parsec of the Galactic centre, SMS has the significant impact of boosting the EMRI rates by a factor of ∼10 in comparison to what would result from a 7/4-Bahcall and Wolf cusp resulting in ∼250 events per Gyr per Milky Way type galaxy. Such an intrinsic rate

79 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify protostars in Spitzer surveys of nine star-forming molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates.
Abstract: We identify protostars in Spitzer surveys of nine star-forming molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine photometry from 2MASS J, H, and Ks bands and Spitzer IRAC and MIPS 24 micron bands to create 1 - 24 micron spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities (Lbol), we derive a relationship between Lbol, L_MIR (integrated from 1 - 24 microns), and SED slope. Estimations of Lbol for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high mass star forming clouds peak near 1 Lsun and show a tail extending toward luminosities above 100 Lsun. The luminosity functions of the low mass star forming clouds do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 Lsun. Finally, we examine the luminosity functions as a function of the local surface density of YSOs. In the Orion molecular cloud, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those predicted by models and find that our observed luminosity functions are best matched by models which invoke competitive accretion, although we do not find strong agreement of the high mass star forming clouds with any of the models.

79 citations


Network Information
Related Topics (5)
Star formation
37.4K papers, 1.8M citations
94% related
Galaxy
109.9K papers, 4.7M citations
94% related
Active galactic nucleus
20.7K papers, 996.7K citations
94% related
Elliptical galaxy
20.9K papers, 1M citations
94% related
Metallicity
19.4K papers, 966.7K citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202336
202225
202133
202047
201943
201822