scispace - formally typeset
Search or ask a question
Topic

Mass segregation

About: Mass segregation is a research topic. Over the lifetime, 1024 publications have been published within this topic receiving 57729 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: For example, this paper showed that for reasonable ages and cluster sizes, the merger of subclusters can indeed lead to compact configurations of the most massive stars, a signal seen both in nature and in large-scale hydrodynamic simulations of star formation from collapsing molecular clouds, and that subvirial initial conditions can make an unmerged cluster display a similar type of mass segregation.
Abstract: The nearest site of massive star formation in Orion is dominated by the Trapezium subsystem, with its four OB stars and numerous companions. The question of how these stars came to be in such close proximity has implications for our understanding of massive star formation and early cluster evolution. A promising route towards rapid mass segregation was proposed by McMillan et al., who showed that the merger product of faster evolving subclusters can inherit their apparent dynamical age from their progenitors. In this paper, we briefly consider this process at a size and time-scale more suited for local and perhaps more typical star formation, with stellar numbers from hundreds to thousands. We find that for reasonable ages and cluster sizes, the merger of subclusters can indeed lead to compact configurations of the most massive stars, a signal seen both in nature and in large-scale hydrodynamic simulations of star formation from collapsing molecular clouds, and that subvirial initial conditions can make an unmerged cluster display a similar type of mass segregation. Additionally, we discuss a variation of the minimum spanning tree mass-segregation technique introduced by Allison et al.

72 citations

Journal ArticleDOI
TL;DR: In this article, an adaptive optics (AO) near-infrared observations of the core of the Tr 14 cluster in the Carina region were obtained with the ESO multi-conjugate AO demonstrator, MAD.
Abstract: We present adaptive optics (AO) near-infrared observations of the core of the Tr 14 cluster in the Carina region obtained with the ESO multi-conjugate AO demonstrator, MAD. Our campaign yields AO-corrected observations with an image quality of about 0.2 �� across the 2 � field of view, which is the widest AO mosaic ever obtained. We detected almost 2000 sources spanning a dynamic range of 10 mag. The pre-main sequence (PMS) locus in the colour−magnitude diagram is well reproduced by Palla & Stahler isochrones with an age of 3 to 5 × 10 5 yr, confirming the very young age of the cluster. We derive a very high (deprojected) central density n0 ∼ 4.5(±0.5) × 10 4 pc −3 and estimate the total mass of the cluster to be about ∼4.3 +3.3 −1.5 × 10 3 M � , although contamination of the field of view might have a significant impact on the derived mass. We show that the pairing process is largely dominated by chance alignment so that physical pairs are difficult to disentangle from spurious ones based on our single epoch observation. Yet, we identify 150 likely bound pairs, 30% of these with a separation smaller than 0.5 �� (∼1300 AU). We further show that at the 2σ level massive stars have more companions than lower-mass stars and that those companions are respectively brighter on average, thus more massive. Finally, we find some hints of mass segregation for stars heavier than about 10 M� . If confirmed, the observed degree of mass segregation could be explained by dynamical evolution, despite the young age of the cluster.

72 citations

Journal ArticleDOI
TL;DR: The mass of unresolved young star clusters derived from spectrophotometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for as mentioned in this paper.
Abstract: The mass of unresolved young star clusters derived from spectrophotometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar initial mass function (IMF), the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter η. When we compute η for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cut-off mass of 25.5 M� . We also monitor the rise of colour gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the Large Magellanic Cloud cluster NGC 1818 at an age of 30 Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2 dex. The star formation rate derived for the cluster population is then underestimated by from 20 to 50 per cent.

71 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the dynamical evolution of compact young clusters near the Galactic center (GC) using Fokker-Planck models and found that the mass segregation may occur on a timescale shorter than the lifetimes of most massive stars.
Abstract: We investigate the dynamical evolution of compact young clusters (CYCs) near the Galactic center (GC) using Fokker-Planck models. CYCs are very young (<5 Myr), compact (<1 pc), and only a few tens of parsecs away from the GC, while they appear to be as massive as the smallest Galactic globular clusters (~104 M?). A survey of cluster lifetimes for various initial mass functions, cluster masses, and Galactocentric radii is presented. Short relaxation times due to the compactness of CYCs and the strong tidal fields near the GC make clusters evaporate fairly quickly. Depending on cluster parameters, mass segregation may occur on a timescale shorter than the lifetimes of most massive stars, which accelerates the cluster's dynamical evolution even more. When the difference between the upper and lower mass boundaries of the initial mass function is large enough, strongly selective ejection of lighter stars makes massive stars dominate even in the outer regions of the cluster, so the dynamical evolution of those clusters is weakly dependent on the lower mass boundary. The mass bins for Fokker-Planck simulations were carefully chosen to properly account for a relatively small number of the most massive stars. We find that clusters with a mass 2 ? 104 M? evaporate in 10 Myr. Two CYCs observed near the GC?the Arches cluster (G0.121+0.17) and the Quintuplet cluster (AFGL 2004)?are interpreted in terms of the models; their central densities and apparent ages are consistent with the hypothesis that they represent successive stages of cluster evolution along a common track, with both undergoing rapid evaporation. A simple calculation based on the total masses in observed CYCs and the lifetimes obtained here indicates that the massive CYCs make up only a fraction of the star formation rate (SFR) in the inner bulge estimated from Lyman continuum photons and far-IR observations. This is consistent with the observation that many stars in the inner bulge form outside the large clusters.

71 citations

Journal ArticleDOI
TL;DR: In this article, the co-evolution of the mass function of dense gravitationally bound cores and of the stellar mass function in a protocluster clump is studied.
Abstract: We have developed a model which describes the co-evolution of the mass function of dense gravitationally bound cores and of the stellar mass function in a protocluster clump. In the model, dense cores are injected, at a uniform rate, at different locations in the clump and evolve under the effect of gas accretion. Gas accretion on to the cores follows a time-dependent accretion rate that describes accretion in a turbulent medium. Once the accretion time-scales of cores of a given age, of a given mass and located at a given distance from the centre of the protocluster clumps exceed their contraction time-scales, they are turned into stars. The stellar initial mass function (IMF) is thus built up from successive generations of cores that undergo this accretion-collapse process. We also include the effect of feedback by the newly formed massive stars through their stellar winds. A fraction of the wind’s energy is assumed to counter gravity and disperse the gas from the protocluster and as a consequence quench further star formation. The latter effect sets the final IMF of the cluster. We apply our model to a clump that is expected to resemble the progenitor clump of the Orion Nebula Cluster (ONC). The ONC is the only known cluster for which a well-determined IMF exists for masses ranging from the sub-stellar regime to very massive stars. Our model is able to reproduce both the shape and normalization of the ONC’s IMF and the mass function of dense submillimetre cores in Orion. The complex features of the ONC’s present-day IMF, namely a shallow slope in the mass range of ∼[0.3–2.5] M� , a steeper slope in the mass range of ∼[2.5–12] M� and a nearly flat tail at the high-mass end, are reproduced. The model predicts a ‘rapid’ star formation process with an age spread for the stars of 2.3 × 10 5 yr which is consistent with the fact that 80 per cent of the ONC’s stars have ages of 0.3 Myr. The model also predicts a primordial mass segregation with the most massive stars being born in the region between two and four times the core radius of the cluster. In parallel, the model also reproduces, at the time the IMF is set and star formation quenched, the mass distribution of dense cores in the Orion star-forming complex. We study the effects of varying some of the model parameters on the resulting IMF and we show that the IMF of stellar clusters is expected to show significant variations, provided variations in the clumps’ and cores’ physical properties exist.

71 citations


Network Information
Related Topics (5)
Star formation
37.4K papers, 1.8M citations
94% related
Galaxy
109.9K papers, 4.7M citations
94% related
Active galactic nucleus
20.7K papers, 996.7K citations
94% related
Elliptical galaxy
20.9K papers, 1M citations
94% related
Metallicity
19.4K papers, 966.7K citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202336
202225
202133
202047
201943
201822