scispace - formally typeset
Search or ask a question
Topic

Mass segregation

About: Mass segregation is a research topic. Over the lifetime, 1024 publications have been published within this topic receiving 57729 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Hosek et al. as mentioned in this paper used multi-epoch Hubble Space Telescope observations to obtain high-precision proper-motion and photometric measurements of the Arches cluster, calculating cluster membership probabilities for stars down to ∼1.8 M o between cluster radii of 0.25 and 3.0 pc.
Abstract: Author(s): Hosek, MW; Lu, JR; Anderson, J; Najarro, F; Ghez, AM; Morris, MR; Clarkson, WI; Albers, SM | Abstract: As a young massive cluster in the central molecular zone, the Arches cluster is a valuable probe of the stellar initial mass function (IMF) in the extreme Galactic center environment. We use multi-epoch Hubble Space Telescope observations to obtain high-precision proper-motion and photometric measurements of the cluster, calculating cluster membership probabilities for stars down to ∼1.8 M o between cluster radii of 0.25 and 3.0 pc. We achieve a cluster sample with just ∼6% field contamination, a significant improvement over photometrically selected samples that are severely compromised by the differential extinction across the field. Combining this sample with K-band spectroscopy of five cluster members, we forward model the Arches cluster to simultaneously constrain its IMF and other properties (such as age and total mass) while accounting for observational uncertainties, completeness, mass segregation, and stellar multiplicity. We find that the Arches IMF is best described by a one-segment power law that is significantly top-heavy: α = 1.80 ±0.05 (stat) ±0.06 (sys), where dN/dm ∝ m -α, though we cannot discount a two-segment power-law model with a high-mass slope only slightly shallower than local star-forming regions but with a break at . In either case, the Arches IMF is significantly different than the standard IMF. Comparing the Arches to other young massive clusters in the Milky Way, we find tentative evidence for a systematically top-heavy IMF at the Galactic center.

67 citations

Journal ArticleDOI
TL;DR: Using the highest-resolution near-IR observation of the Trumpler 15 star cluster taken by the Chandra X-ray Observatory, the authors in this article estimate the total size of its stellar population by comparing the x-ray luminosity function (XLF) of the detected sources to a calibrator cluster and identify for the first time a significant fraction of its individual members.
Abstract: Using the highest-resolution X-ray observation of the Trumpler 15 star cluster taken by the Chandra X-ray Observatory, we estimate the total size of its stellar population by comparing the X-ray luminosity function (XLF) of the detected sources to a calibrator cluster and identify for the first time a significant fraction (~14%) of its individual members. The highest-resolution near-IR observation of Trumpler 15 (taken by the HAWK-I instrument on the Very Large Telescope) was found to detect most of our X-ray selected sample of cluster members, with a K-excess disk frequency of 3.8% ± 0.7%. The near-IR data, XLF, and published spectral types of the brightest members support a cluster age estimate (5-10 Myr) that is older than those for the nearby Trumpler 14 and Trumpler 16 clusters, and suggest that high-mass members may have already exploded as supernovae. The morphology of the inner ~0.7 pc core of the cluster is found to be spherical. However, the outer regions (beyond ~2 pc) are elongated, forming an "envelope" of stars that, in projection, appears to connect Trumpler 15 to Trumpler 14; this morphology supports the view that these clusters are physically associated. Clear evidence of mass segregation is seen. This study appears in this special issue devoted to the Chandra Carina Complex Project, a 1.42 deg2 Chandra X-ray survey of the Great Nebula in Carina.

67 citations

Journal ArticleDOI
TL;DR: In this paper, the authors performed a deep wide field optical survey of the young (~100-150 Myr) open cluster Blanco1 to study its low mass population well down into the brown dwarf regime and estimate its mass function over the whole cluster mass range.
Abstract: We performed a deep wide field optical survey of the young (~100-150 Myr) open cluster Blanco1 to study its low mass population well down into the brown dwarf regime and estimate its mass function over the whole cluster mass range.The survey covers 2.3 square degrees in the I and z-bands down to I ~ z ~ 24 with the CFH12K camera. Considering two different cluster ages (100 and 150 Myr), we selected cluster member candidates on the basis of their location in the (I,I-z) CMD relative to the isochrones, and estimated the contamination by foreground late-type field dwarfs using statistical arguments, infrared photometry and low-resolution optical spectroscopy. We find that our survey should contain about 57% of the cluster members in the 0.03-0.6 Mo mass range, including 30-40 brown dwarfs. The candidate's radial distribution presents evidence that mass segregation has already occured in the cluster. We took it into account to estimate the cluster mass function across the stellar/substellar boundary. We find that, between 0.03Mo and 0.6Mo, the cluster mass distribution does not depend much on its exact age, and is well represented by a single power-law, with an index alpha=0.69 +/- 0.15. Over the whole mass domain, from 0.03Mo to 3Mo, the mass function is better fitted by a log-normal function with m0=0.36 +/- 0.07Mo and sigma=0.58 +/- 0.06. Comparison between the Blanco1 mass function, other young open clusters' MF, and the galactic disc MF suggests that the IMF, from the substellar domain to the higher mass part, does not depend much on initial conditions. We discuss the implications of this result on theories developed to date to explain the origin of the mass distribution.

67 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive multi-wavelength study of the star-forming region NGC 1893 is presented to explore the effects of massive stars on low-mass star formation.
Abstract: We present a comprehensive multi-wavelength study of the star-forming region NGC 1893 to explore the effects of massive stars on low-mass star formation. Using near-infrared colours, slitless spectroscopy and narrow-band $H\alpha$ photometry in the cluster region we have identified candidate young stellar objects (YSOs) distributed in a pattern from the cluster to one of the nearby nebulae Sim 129. The $V, (V-I)$ colour-magnitude diagram of the YSOs indicates that majority of these objects have ages between 1 to 5 Myr. The spread in the ages of the YSOs may indicate a non-coeval star formation in the cluster. The slope of the KLF for the cluster is estimated to be $0.34\pm0.07$, which agrees well with the average value ($\sim 0.4$) reported for young clusters. For the entire observed mass range $0.6 < M/M_\odot \le 17.7$ the value of the slope of the initial mass function, $`\Gamma$', comes out to be $-1.27\pm0.08$, which is in agreement with the Salpeter value of -1.35 in the solar neighborhood. However, the value of $`\Gamma$' for PMS phase stars (mass range $0.6 < M/M_\odot \le 2.0$) is found to be $-0.88\pm0.09$ which is shallower than the value ($-1.71\pm0.20$) obtained for MS stars having mass range $2.5 < M/M_\odot \le 17.7$ indicating a break in the slope of the mass function at $\sim 2 M_\odot$. Estimated $`\Gamma$' values indicate an effect of mass segregation for main-sequence stars, in the sense that massive stars are preferentially located towards the cluster center. The estimated dynamical evolution time is found to be greater than the age of the cluster, therefore the observed mass segregation in the cluster may be the imprint of the star formation process. There is evidence for triggered star formation in the region, which seems to govern initial morphology of the cluster.

66 citations

Journal ArticleDOI
TL;DR: In this article, a set of N-body simulations aimed at exploring how the process of mass segregation (as traced by the spatial distribution of blue straggler stars, BSSs) is affected by the presence of a population of heavy dark remnants (as neutron stars and black holes).
Abstract: We present the results of a set of N-body simulations aimed at exploring how the process of mass segregation (as traced by the spatial distribution of blue straggler stars, BSSs) is affected by the presence of a population of heavy dark remnants (as neutron stars and black holes). To this end, clusters characterized by different initial concentrations and different fractions of dark remnants have been modeled. We find that an increasing fraction of stellar-mass black holes significantly delays the mass segregation of BSSs and the visible stellar component. In order to trace the evolution of BSS segregation, we introduce a new parameter ($A^+$) that can be easily measured when the cumulative radial distribution of these stars and a reference population are available. Our simulations show that $A^+$ might also be used as an approximate indicator of the time remaining to the core collapse of the visible component.

66 citations


Network Information
Related Topics (5)
Star formation
37.4K papers, 1.8M citations
94% related
Galaxy
109.9K papers, 4.7M citations
94% related
Active galactic nucleus
20.7K papers, 996.7K citations
94% related
Elliptical galaxy
20.9K papers, 1M citations
94% related
Metallicity
19.4K papers, 966.7K citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202336
202225
202133
202047
201943
201822