scispace - formally typeset
Search or ask a question
Topic

Mass transfer coefficient

About: Mass transfer coefficient is a research topic. Over the lifetime, 7827 publications have been published within this topic receiving 168354 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental results obtained in three different methanogenic reactors for a wide range of conditions of mixing and gas production confirmed the general existence of low mass transfer coefficients and consequently of large overconcentrations of dissolved methane and hydrogen.
Abstract: Liquid-to-gas mass transfer in anaerobic processes was investigated theoretically and experimentally. By using the classical definition of kLa, the global volumetric mass transfer coefficient, theoretical development of mass balances in such processes demonstrates that the mass transfer of highly soluble gases is not limited in the usual conditions occurring in anaerobic fermentors (low-intensity mixing). Conversely, the limitation is important for poorly soluble gases, such as methane and hydrogen. The latter could be overconcentrated to as much as 80 times the value at thermodynamic equilibrium. Such overconcentrations bring into question the biological interpretations that have been deduced solely from gaseous measurements. Experimental results obtained in three different methanogenic reactors for a wide range of conditions of mixing and gas production confirmed the general existence of low mass transfer coefficients and consequently of large overconcentrations of dissolved methane and hydrogen (up to 12 and 70 times the equilibrium values, respectively). Hydrogen mass transfer coefficients were obtained from the direct measurements of dissolved and gaseous concentrations, while carbon dioxide coefficients were calculated from gas phase composition and calculation of related dissolved concentration. Methane transfer coefficients were based on calculations from the carbon dioxide coefficients. From mass balances performed on a gas bubble during its simulated growth and ascent to the surface of the liquid, the methane and carbon dioxide contents in the gas bubble appeared to be controlled by the bubble growth process, while the bubble ascent was largely responsible for a slight enrichment in hydrogen.

272 citations

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional stationary model based on the universal conservation laws and coupled with electrochemical reactions is applied to describe a single all-vanadium redox flow cell.

270 citations

Journal ArticleDOI
TL;DR: A theoretical model to investigate the role played by the particulate (two-phase) nature of blood on oxygen (O2) release in capillary-size vessels suggests that the fraction of total O2 transport resistance that resides inside the capillary is influenced significantly by the discrete nature ofBlood.

269 citations

Journal ArticleDOI
TL;DR: In this article, a new technique for solvent extraction with immobilized interfaces in a hydrophobic microporous membrane is described, where no dispersion or coalescence is necessary.

267 citations

Journal ArticleDOI
TL;DR: Results of dissolution experiments with trapped nonaqueous phase liquids (NAPLs) are modeled by a mass transfer analysis and the fitted NAPL sphere diameters are consistent with the size of N APL ganglia observed by others and are the smallest at the largest flow velocity.
Abstract: Results of dissolution experiments with trapped nonaqueous phase liquids (NAPLs) are modeled by a mass transfer analysis. The model represents the NAPL as isolated spheres that shrink with dissolution and uses a mass transfer coefficient correlation reported in the literature for dissolving spherical solids. The model accounts for the reduced permeability of a region of residual NAPL relative to the permeability of the surrounding clean media that causes the flowing water to partially bypass the residual NAPL. The dissolution experiments with toluene alone and a benzene-toluene mixture were conducted in a water-saturated column of homogeneous glass beads over a range of Darcy velocities from 0.5 to 10 m d(-1). The model could represent the observed effluent concentrations as the NAPL underwent complete dissolution. The changing pressure drop across the column was predicted following an initial period of NAPL reconfiguration. The fitted NAPL sphere diameters of 0.15 to 0.40 cm are consistent with the size of NAPL ganglia observed by others and are the smallest at the largest flow velocity.

265 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
84% related
Adsorption
226.4K papers, 5.9M citations
81% related
Sorption
45.8K papers, 1.3M citations
80% related
Reynolds number
68.4K papers, 1.6M citations
79% related
Wastewater
92.5K papers, 1.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023110
2022240
2021245
2020205
2019207
2018252