scispace - formally typeset
Search or ask a question

Showing papers on "Master equation published in 2012"


Journal ArticleDOI
TL;DR: Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
Abstract: Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation–dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production. (Some figures may appear in colour only in the online journal) This article was invited by Erwin Frey.

2,834 citations


Book
07 Feb 2012
TL;DR: In this paper, the Fokker-Planck Equation for N Variables (FPE) was extended to N = 1 variable and N = 2 variables, where N is the number of variables in the system.
Abstract: 1. Introduction.- 1.1 Brownian Motion.- 1.1.1 Deterministic Differential Equation.- 1.1.2 Stochastic Differential Equation.- 1.1.3 Equation of Motion for the Distribution Function.- 1.2 Fokker-Planck Equation.- 1.2.1 Fokker-Planck Equation for One Variable.- 1.2.2 Fokker-Planck Equation for N Variables.- 1.2.3 How Does a Fokker-Planck Equation Arise?.- 1.2.4 Purpose of the Fokker-Planck Equation.- 1.2.5 Solutions of the Fokker-Planck Equation.- 1.2.6 Kramers and Smoluchowski Equations.- 1.2.7 Generalizations of the Fokker-Planck Equation.- 1.3 Boltzmann Equation.- 1.4 Master Equation.- 2. Probability Theory.- 2.1 Random Variable and Probability Density.- 2.2 Characteristic Function and Cumulants.- 2.3 Generalization to Several Random Variables.- 2.3.1 Conditional Probability Density.- 2.3.2 Cross Correlation.- 2.3.3 Gaussian Distribution.- 2.4 Time-Dependent Random Variables.- 2.4.1 Classification of Stochastic Processes.- 2.4.2 Chapman-Kolmogorov Equation.- 2.4.3 Wiener-Khintchine Theorem.- 2.5 Several Time-Dependent Random Variables.- 3. Langevin Equations.- 3.1 Langevin Equation for Brownian Motion.- 3.1.1 Mean-Squared Displacement.- 3.1.2 Three-Dimensional Case.- 3.1.3 Calculation of the Stationary Velocity Distribution Function.- 3.2 Ornstein-Uhlenbeck Process.- 3.2.1 Calculation of Moments.- 3.2.2 Correlation Function.- 3.2.3 Solution by Fourier Transformation.- 3.3 Nonlinear Langevin Equation, One Variable.- 3.3.1 Example.- 3.3.2 Kramers-Moyal Expansion Coefficients.- 3.3.3 Ito's and Stratonovich's Definitions.- 3.4 Nonlinear Langevin Equations, Several Variables.- 3.4.1 Determination of the Langevin Equation from Drift and Diffusion Coefficients.- 3.4.2 Transformation of Variables.- 3.4.3 How to Obtain Drift and Diffusion Coefficients for Systems.- 3.5 Markov Property.- 3.6 Solutions of the Langevin Equation by Computer Simulation.- 4. Fokker-Planck Equation.- 4.1 Kramers-Moyal Forward Expansion.- 4.1.1 Formal Solution.- 4.2 Kramers-Moyal Backward Expansion.- 4.2.1 Formal Solution.- 4.2.2 Equivalence of the Solutions of the Forward and Backward Equations.- 4.3 Pawula Theorem.- 4.4 Fokker-Planck Equation for One Variable.- 4.4.1 Transition Probability Density for Small Times.- 4.4.2 Path Integral Solutions.- 4.5 Generation and Recombination Processes.- 4.6 Application of Truncated Kramers-Moyal Expansions.- 4.7 Fokker-Planck Equation for N Variables.- 4.7.1 Probability Current.- 4.7.2 Joint Probability Distribution.- 4.7.3 Transition Probability Density for Small Times.- 4.8 Examples for Fokker-Planck Equations with Several Variables.- 4.8.1 Three-Dimensional Brownian Motion without Position Variable.- 4.8.2 One-Dimensional Brownian Motion in a Potential.- 4.8.3 Three-Dimensional Brownian Motion in an External Force.- 4.8.4 Brownian Motion of Two Interacting Particles in an External Potential.- 4.9 Transformation of Variables.- 4.10 Covariant Form of the Fokker-Planck Equation.- 5. Fokker-Planck Equation for One Variable Methods of Solution.- 5.1 Normalization.- 5.2 Stationary Solution.- 5.3 Ornstein-Uhlenbeck Process.- 5.4 Eigenfunction Expansion.- 5.5 Examples.- 5.5.1 Parabolic Potential.- 5.5.2 Inverted Parabolic Potential.- 5.5.3 Infinite Square Well for the Schrudinger Potential.- 5.5.4 V-Shaped Potential for the Fokker-Planck Equation.- 5.6 Jump Conditions.- 5.7 A Bistable Model Potential.- 5.8 Eigenfunctions and Eigenvalues of Inverted Potentials.- 5.9 Approximate and Numerical Methods for Determining Eigenvalues and Eigenfunctions.- 5.9.1 Variational Method.- 5.9.2 Numerical Integration.- 5.9.3 Expansion into a Complete Set.- 5.10 Diffusion Over a Barrier.- 5.10.1 Kramers' Escape Rate.- 5.10.2 Bistable and Metastable Potential.- 6. Fokker-Planck Equation for Several Variables Methods of Solution.- 6.1 Approach of the Solutions to a Limit Solution.- 6.2 Expansion into a Biorthogonal Set.- 6.3 Transformation of the Fokker-Planck Operator, Eigenfunction Expansions.- 6.4 Detailed Balance.- 6.5 Ornstein-Uhlenbeck Process.- 6.6 Further Methods for Solving the Fokker-Planck Equation.- 6.6.1 Transformation of Variables.- 6.6.2 Variational Method.- 6.6.3 Reduction to an Hermitian Problem.- 6.6.4 Numerical Integration.- 6.6.5 Expansion into Complete Sets.- 6.6.6 Matrix Continued-Fraction Method.- 6.6.7 WKB Method.- 7. Linear Response and Correlation Functions.- 7.1 Linear Response Function.- 7.2 Correlation Functions.- 7.3 Susceptibility.- 8. Reduction of the Number of Variables.- 8.1 First-Passage Time Problems.- 8.2 Drift and Diffusion Coefficients Independent of Some Variables.- 8.2.1 Time Integrals of Markovian Variables.- 8.3 Adiabatic Elimination of Fast Variables.- 8.3.1 Linear Process with Respect to the Fast Variable.- 8.3.2 Connection to the Nakajima-Zwanzig Projector Formalism.- 9. Solutions of Tridiagonal Recurrence Relations, Application to Ordinary and Partial Differential Equations.- 9.1 Applications and Forms of Tridiagonal Recurrence Relations.- 9.1.1 Scalar Recurrence Relation.- 9.1.2 Vector Recurrence Relation.- 9.2 Solutions of Scalar Recurrence Relations.- 9.2.1 Stationary Solution.- 9.2.2 Initial Value Problem.- 9.2.3 Eigenvalue Problem.- 9.3 Solutions of Vector Recurrence Relations.- 9.3.1 Initial Value Problem.- 9.3.2 Eigenvalue Problem.- 9.4 Ordinary and Partial Differential Equations with Multiplicative Harmonic Time-Dependent Parameters.- 9.4.1 Ordinary Differential Equations.- 9.4.2 Partial Differential Equations.- 9.5 Methods for Calculating Continued Fractions.- 9.5.1 Ordinary Continued Fractions.- 9.5.2 Matrix Continued Fractions.- 10. Solutions of the Kramers Equation.- 10.1 Forms of the Kramers Equation.- 10.1.1 Normalization of Variables.- 10.1.2 Reversible and Irreversible Operators.- 10.1.3 Transformation of the Operators.- 10.1.4 Expansion into Hermite Functions.- 10.2 Solutions for a Linear Force.- 10.2.1 Transition Probability.- 10.2.2 Eigenvalues and Eigenfunctions.- 10.3 Matrix Continued-Fraction Solutions of the Kramers Equation.- 10.3.1 Initial Value Problem.- 10.3.2 Eigenvalue Problem.- 10.4 Inverse Friction Expansion.- 10.4.1 Inverse Friction Expansion for K0(t), G0,0(t) and L0(t).- 10.4.2 Determination of Eigenvalues and Eigenvectors.- 10.4.3 Expansion for the Green's Function Gn,m(t).- 10.4.4 Position-Dependent Friction.- 11. Brownian Motion in Periodic Potentials.- 11.1 Applications.- 11.1.1 Pendulum.- 11.1.2 Superionic Conductor.- 11.1.3 Josephson Tunneling Junction.- 11.1.4 Rotation of Dipoles in a Constant Field.- 11.1.5 Phase-Locked Loop.- 11.1.6 Connection to the Sine-Gordon Equation.- 11.2 Normalization of the Langevin and Fokker-Planck Equations.- 11.3 High-Friction Limit.- 11.3.1 Stationary Solution.- 11.3.2 Time-Dependent Solution.- 11.4 Low-Friction Limit.- 11.4.1 Transformation to E and x Variables.- 11.4.2 'Ansatz' for the Stationary Distribution Functions.- 11.4.3 x-Independent Functions.- 11.4.4 x-Dependent Functions.- 11.4.5 Corrected x-Independent Functions and Mobility.- 11.5 Stationary Solutions for Arbitrary Friction.- 11.5.1 Periodicity of the Stationary Distribution Function.- 11.5.2 Matrix Continued-Fraction Method.- 11.5.3 Calculation of the Stationary Distribution Function.- 11.5.4 Alternative Matrix Continued Fraction for the Cosine Potential.- 11.6 Bistability between Running and Locked Solution.- 11.6.1 Solutions Without Noise.- 11.6.2 Solutions With Noise.- 11.6.3 Low-Friction Mobility With Noise.- 11.7 Instationary Solutions.- 11.7.1 Diffusion Constant.- 11.7.2 Transition Probability for Large Times.- 11.8 Susceptibilities.- 11.8.1 Zero-Friction Limit.- 11.9 Eigenvalues and Eigenfunctions.- 11.9.1 Eigenvalues and Eigenfunctions in the Low-Friction Limit.- 12. Statistical Properties of Laser Light.- 12.1 Semiclassical Laser Equations.- 12.1.1 Equations Without Noise.- 12.1.2 Langevin Equation.- 12.1.3 Laser Fokker-Planck Equation.- 12.2 Stationary Solution and Its Expectation Values.- 12.3 Expansion in Eigenmodes.- 12.4 Expansion into a Complete Set Solution by Matrix Continued Fractions.- 12.4.1 Determination of Eigenvalues.- 12.5 Transient Solution.- 12.5.1 Eigenfunction Method.- 12.5.2 Expansion into a Complete Set.- 12.5.3 Solution for Large Pump Parameters.- 12.6 Photoelectron Counting Distribution.- 12.6.1 Counting Distribution for Short Intervals.- 12.6.2 Expectation Values for Arbitrary Intervals.- Appendices.- A1 Stochastic Differential Equations with Colored Gaussian Noise.- A2 Boltzmann Equation with BGK and SW Collision Operators.- A3 Evaluation of a Matrix Continued Fraction for the Harmonic Oscillator.- A4 Damped Quantum-Mechanical Harmonic Oscillator.- A5 Alternative Derivation of the Fokker-Planck Equation.- A6 Fluctuating Control Parameter.- S. Supplement to the Second Edition.- S.1 Solutions of the Fokker-Planck Equation by Computer Simulation (Sect. 3.6).- S.2 Kramers-Moyal Expansion (Sect. 4.6).- S.3 Example for the Covariant Form of the Fokker-Planck Equation (Sect. 4.10).- S.4 Connection to Supersymmetry and Exact Solutions of the One Variable Fokker-Planck Equation (Chap. 5).- S.5 Nondifferentiability of the Potential for the Weak Noise Expansion (Sects. 6.6 and 6.7).- S.6 Further Applications of Matrix Continued-Fractions (Chap. 9).- S.7 Brownian Motion in a Double-Well Potential (Chaps. 10 and 11).- S.8 Boundary Layer Theory (Sect. 11.4).- S.9 Calculation of Correlation Times (Sect. 7.12).- S.10 Colored Noise (Appendix A1).- S.11 Fokker-Planck Equation with a Non-Positive-Definite Diffusion Matrix and Fokker-Planck Equation with Additional Third-Order-Derivative Terms.- References.

2,582 citations


Journal ArticleDOI
TL;DR: A Master Equation Solver for Multi-Energy Well Reactions (MESMER), a user-friendly, object-oriented, open-source code designed to facilitate kinetic simulations over multi-well molecular energy topologies where energy transfer with an external bath impacts phenomenological kinetics.
Abstract: The most commonly used theoretical models for describing chemical kinetics are accurate in two limits. When relaxation is fast with respect to reaction time scales, thermal transition state theory (TST) is the theoretical tool of choice. In the limit of slow relaxation, an energy resolved description like RRKM theory is more appropriate. For intermediate relaxation regimes, where much of the chemistry in nature occurs, theoretical approaches are somewhat less well established. However, in recent years master equation approaches have been successfully used to analyze and predict nonequilibrium chemical kinetics across a range of intermediate relaxation regimes spanning atmospheric, combustion, and (very recently) solution phase organic chemistry. In this article, we describe a Master Equation Solver for Multi-Energy Well Reactions (MESMER), a user-friendly, object-oriented, open-source code designed to facilitate kinetic simulations over multi-well molecular energy topologies where energy transfer with an external bath impacts phenomenological kinetics. MESMER offers users a range of user options specified via keywords and also includes some unique statistical mechanics approaches like contracted basis set methods and nonadiabatic RRKM theory for modeling spin-hopping. It is our hope that the design principles implemented in MESMER will facilitate its development and usage by workers across a range of fields concerned with chemical kinetics. As accurate thermodynamics data become more widely available, electronic structure theory is increasingly reliable, and as our fundamental understanding of energy transfer improves, we envision that tools like MESMER will eventually enable routine and reliable prediction of nonequilibrium kinetics in arbitrary systems.

457 citations


Journal ArticleDOI
TL;DR: A general theory of chemical kinetics, developed over the past 7 years, is presented, capable of answering questions about how reaction rate is a nonlinear function of the thermodynamic driving force, the free energy of reaction, expressed in terms of variational chemical potentials.
Abstract: Classical theories of chemical kinetics assume independent reactions in dilute solutions, whose rates are determined by mean concentrations In condensed matter, strong interactions alter chemical activities and create inhomogeneities that can dramatically affect the reaction rate The extreme case is that of a reaction coupled to a phase transformation, whose kinetics must depend on the order parameter -- and its gradients, at phase boundaries This Account presents a general theory of chemical kinetics based on nonequilibrium thermodynamics The reaction rate is a nonlinear function of the thermodynamic driving force (free energy of reaction) expressed in terms of variational chemical potentials The Cahn-Hilliard and Allen-Cahn equations are unified and extended via a master equation for non-equilibrium chemical thermodynamics For electrochemistry, both Marcus and Butler-Volmer kinetics are generalized for concentrated solutions and ionic solids The theory is applied to intercalation dynamics in the phase separating Li-ion battery material Li$_x$FePO$_4$

440 citations


Journal ArticleDOI
TL;DR: Decoherence provides physical justification of surface hopping, obviating the need for ad hoc surface hopping rules and providing an improvement over the most popular surface hopping technique.
Abstract: A simple surface hopping method for nonadiabatic molecular dynamics is developed. The method derives from a stochastic modeling of the time-dependent Schrodinger and master equations for open systems and accounts simultaneously for quantum mechanical branching in the otherwise classical (nuclear) degrees of freedom and loss of coherence within the quantum (electronic) subsystem due to coupling to nuclei. Electronic dynamics in the Hilbert space takes the form of a unitary evolution, intermittent with stochastic decoherence events that are manifested as a localization toward (adiabatic) basis states. Classical particles evolve along a single potential energy surface and can switch surfaces only at the decoherence events. Thus, decoherence provides physical justification of surface hopping, obviating the need for ad hoc surface hopping rules. The method is tested with model problems, showing good agreement with the exact quantum mechanical results and providing an improvement over the most popular surface hopping technique. The method is implemented within real-time time-dependent density functional theory formulated in the Kohn-Sham representation and is applied to carbon nanotubes and graphene nanoribbons. The calculated time scales of non-radiative quenching of luminescence in these systems agree with the experimental data and earlier calculations.

437 citations


Journal ArticleDOI
TL;DR: The exact analytic solutions for various non-Markovian thermal environments show that non- Markovian dynamics can be largely understood from the environmental-modified spectra of open systems.
Abstract: We present a general theory of non-Markovian dynamics for open systems of noninteracting fermions (bosons) linearly coupled to thermal environments of noninteracting fermions (bosons). We explore the non-Markovian dynamics by connecting the exact master equations with the nonequilibirum Green's functions. Environmental backactions are fully taken into account. The non-Markovian dynamics consists of nonexponential decays and dissipationless oscillations. Nonexponential decays are induced by the discontinuity in the imaginary part of the self-energy corrections. Dissipationless oscillations arise from band gaps or the finite band structure of spectral densities. The exact analytic solutions for various non-Markovian thermal environments show that non-Markovian dynamics can be largely understood from the environmental-modified spectra of open systems.

278 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an effective operator formalism for open quantum systems, employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, which reduces the evolution to the ground state dynamics.
Abstract: We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution involves a single effective Hamiltonian and one effective Lindblad operator for each naturally occurring decay process. Simple expressions are derived for the effective operators which can be directly applied to reach effective equations of motion for the ground states. We compare our method with the hitherto existing concepts for effective interactions and present physical examples for the application of our formalism, including dissipative state preparation by engineered decay processes.

263 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath, and used them to study the evolution of an Ising spin chain.
Abstract: We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state.

255 citations


Journal ArticleDOI
TL;DR: The concept of nonequilibrium steady states (NESS) was introduced in this paper, which is a mathematical concept associated with stationary Markov processes and is applied to stochastic resonance (also known as coherent resonance) and molecular motors.

204 citations


Journal ArticleDOI
TL;DR: E efficiencies are demonstrated up to 90%, significantly larger than required to demonstrate interaction-dominated CPS, and on the right order to test Bell's inequality with electrons, for which large apparent discrepancies are possible.
Abstract: The two electrons of a Cooper pair in a conventional superconductor form a spin singlet and therefore a maximally entangled state. Recently, it was demonstrated that the two particles can be extracted from the superconductor into two spatially separated contacts via two quantum dots in a process called Cooper pair splitting (CPS). Competing transport processes, however, limit the efficiency of this process. Here we demonstrate efficiencies up to 90%, significantly larger than required to demonstrate interaction-dominated CPS, and on the right order to test Bell's inequality with electrons. We compare the CPS currents through both quantum dots, for which large apparent discrepancies are possible. The latter we explain intuitively and in a semiclassical master equation model. Large efficiencies are required to detect electron entanglement and for prospective electronics-based quantum information technologies.

176 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide a probabilistic definition of the bed load sediment flux, which is consistent with experimental measurements and simulations of particle motions reported in companion papers, and the formulation is based on the Fokker-Planck equation (an advection-diffusion form of the Master equation).
Abstract: [1] We provide a probabilistic definition of the bed load sediment flux. In treating particle positions and motions as stochastic quantities, a flux form of the Master equation (a general expression of conservation) reveals that the volumetric flux involves an advective part equal to the product of an average particle velocity and the particle activity (the solid volume of particles in motion per unit streambed area), and a diffusive part involving the gradient of the product of the particle activity and a diffusivity that arises from the second moment of the probability density function of particle displacements. Gradients in the activity, instantaneous or time-averaged, therefore effect a particle flux. Time-averaged descriptions of the flux involve averaged products of the particle activity, the particle velocity and the diffusivity; the significance of these products depends on the scale of averaging. The flux form of the Exner equation looks like a Fokker-Planck equation (an advection-diffusion form of the Master equation). The entrainment form of the Exner equation similarly involves advective and diffusive terms, but because it is based on the joint probability density function of particle hop distances and associated travel times, this form involves a time derivative term that represents a lag effect associated with the exchange of particles between the static and active states. The formulation is consistent with experimental measurements and simulations of particle motions reported in companion papers.

Journal ArticleDOI
TL;DR: It is demonstrated that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states.
Abstract: We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.

Journal ArticleDOI
TL;DR: In this paper, the authors show that pair approximations (PA) and mean-field theories can coincide under certain circumstances, and numerical simulations confirm that PA is highly accurate in these cases.
Abstract: A wide class of binary-state dynamics on networks---including, for example, the voter model, the Bass diffusion model, and threshold models---can be described in terms of transition rates (spin-flip probabilities) that depend on the number of nearest neighbors in each of the two possible states. High-accuracy approximations for the emergent dynamics of such models on uncorrelated, infinite networks are given by recently-developed compartmental models or approximate master equations (AME). Pair approximations (PA) and mean-field theories can be systematically derived from the AME. We show that PA and AME solutions can coincide under certain circumstances, and numerical simulations confirm that PA is highly accurate in these cases. For monotone dynamics (where transitions out of one nodal state are impossible, e.g., SI disease-spread or Bass diffusion), PA and AME give identical results for the fraction of nodes in the infected (active) state for all time, provided the rate of infection depends linearly on the number of infected neighbors. In the more general non-monotone case, we derive a condition---that proves equivalent to a detailed balance condition on the dynamics---for PA and AME solutions to coincide in the limit $t \to \infty$. This permits bifurcation analysis, yielding explicit expressions for the critical (ferromagnetic/paramagnetic transition) point of such dynamics, closely analogous to the critical temperature of the Ising spin model. Finally, the AME for threshold models of propagation is shown to reduce to just two differential equations, and to give excellent agreement with numerical simulations. As part of this work, Octave/Matlab code for implementing and solving the differential equation systems is made available for download.

Journal ArticleDOI
TL;DR: In this article, a theoretical framework for describing a wave packet of light prepared in a state of definite photon number interacting with an arbitrary quantum system (e.g., a quantum harmonic oscillator or a multilevel atom) is presented.
Abstract: We present a theoretical framework that describes a wave packet of light prepared in a state of definite photon number interacting with an arbitrary quantum system (e.g., a quantum harmonic oscillator or a multilevel atom). Within this framework we derive master equations for the system as well as for output field quantities such as quadratures and photon flux. These results are then generalized to wave packets with arbitrary spectral distribution functions. Finally, we obtain master equations and output field quantities for systems interacting with wave packets in multiple spatial and/or polarization modes.

Journal ArticleDOI
TL;DR: A stochastic approach to nonequilibrium thermodynamics based on the expression of the entropy production rate advanced by Schnakenberg for systems described by a master equation is presented, finding a singularity at the critical point of the linear-logarithm type.
Abstract: We present a stochastic approach to nonequilibrium thermodynamics based on the expression of the entropy production rate advanced by Schnakenberg for systems described by a master equation. From the microscopic Schnakenberg expression we get the macroscopic bilinear form for the entropy production rate in terms of fluxes and forces. This is performed by placing the system in contact with two reservoirs with distinct sets of thermodynamic fields and by assuming an appropriate form for the transition rate. The approach is applied to an interacting lattice gas model in contact with two heat and particle reservoirs. On a square lattice, a continuous symmetry breaking phase transition takes place such that at the nonequilibrium ordered phase a heat flow sets in even when the temperatures of the reservoirs are the same. The entropy production rate is found to have a singularity at the critical point of the linear-logarithm type.

Journal ArticleDOI
TL;DR: This article uses the system-size expansion, a systematic method of solving the chemical master equation for monostable reaction systems, to calculate in the limit of large reaction volumes, the first- and second-order corrections to the mean concentration prediction of the rate equations and thefirst-order correction to the variance and covariance predictions of the linear-noise approximation.
Abstract: Moment-closure approximations have in recent years become a popular means to estimate the mean concentrations and the variances and covariances of the concentration fluctuations of species involved in stochastic chemical reactions, such as those inside cells. The typical assumption behind these methods is that all cumulants of the probability distribution function solution of the chemical master equation which are higher than a certain order are negligibly small and hence can be set to zero. These approximations are ad hoc and hence the reliability of the predictions of these class of methods is presently unclear. In this article, we study the accuracy of the two moment approximation (2MA) (third and higher order cumulants are zero) and of the three moment approximation (3MA) (fourth and higher order cumulants are zero) for chemical systems which are monostable and composed of unimolecular and bimolecular reactions. We use the system-size expansion, a systematic method of solving the chemical master equation for monostable reaction systems, to calculate in the limit of large reaction volumes, the first- and second-order corrections to the mean concentration prediction of the rate equations and the first-order correction to the variance and covariance predictions of the linear-noise approximation. We also compute these corrections using the 2MA and the 3MA. Comparison of the latter results with those of the system-size expansion shows that: (i) the 2MA accurately captures the first-order correction to the rate equations but its first-order correction to the linear-noise approximation exhibits the wrong dependence on the rate constants. (ii) the 3MA accurately captures the first- and second-order corrections to the rate equation predictions and the first-order correction to the linear-noise approximation. Hence while both the 2MA and the 3MA are more accurate than the rate equations, only the 3MA is more accurate than the linear-noise approximation across all of parameter space. The analytical results are numerically validated for dimerization and enzyme-catalyzed reactions.

Journal ArticleDOI
TL;DR: The general form of a master equation is derived describing the reduced time evolution of a sequence of subsystems "propagating" in an environment which can be described as a sequences of subenvironments.
Abstract: We derive the general form of a master equation describing the reduced time evolution of a sequence of subsystems "propagating" in an environment which can be described as a sequence of subenvironments. The interaction between subsystems and subenvironments is described in terms of a collision model, with the irreversible dynamics of the subenvironments between collisions explicitly taken into account. In the weak coupling regime, we show that the collisional model produces a correlated Markovian evolution for the joint density matrix of the multipartite system. The associated Lindblad superoperator contains pairwise terms describing cross correlation between the different subsystems. Such a model can describe a broad range of physical situations, ranging from quantum channels with memory to photon propagation in concatenated quantum optical systems.

Journal ArticleDOI
TL;DR: The stochastic master equations, that is to say, quantum filters, and master equations for an arbitrary quantum system probed by a continuous-mode bosonic input field in two types of non-classical states are derived.
Abstract: We derive the stochastic master equations, that is to say, quantum filters, and master equations for an arbitrary quantum system probed by a continuous-mode bosonic input field in two types of nonclassical states. Specifically, we consider the cases where the state of the input field is a superposition or combination of (1) a continuous-mode, single-photon wave packet and vacuum, and (2) any continuous-mode coherent states.

Journal ArticleDOI
TL;DR: In this article, an exact solution of the steady-state master equation for arbitrary values of the parameters, and simplified solutions for a number of special cases, are presented for a gene regulatory feedback loop.
Abstract: Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence, exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory feedback loop: a gene produces protein which then binds to the promoter of the same gene and regulates its expression. The protein degrades in its free and bound forms. This network breaks detailed balance and involves a single bimolecular reaction step. We provide an exact solution of the steady-state master equation for arbitrary values of the parameters, and present simplified solutions for a number of special cases. The full parametric dependence of the analytical non-equilibrium steady-state probability distribution is verified by direct numerical solution of the master equations. For the case where the degradation rate of bound and free protein is the same, our solution is at variance with a previous claim of an exact solution [J. E. M. Hornos, D. Schultz, G. C. P. Innocentini, J. Wang, A. M. Walczak, J. N. Onuchic, and P. G. Wolynes, Phys. Rev. E 72, 051907 (2005)10.1103/PhysRevE.72.051907, and subsequent studies]. We show explicitly that this is due to an unphysical formulation of the underlying master equation in those studies.

Journal ArticleDOI
TL;DR: In this paper, the authors compare second order perturbation theory results in the original untransformed frame, the polaron frame, and the variational extension with numerically exact path integral calculations of the equilibrium reduced density matrix.
Abstract: In the study of open quantum systems, the polaron transformation has recently attracted a renewed interest as it offers the possibility to explore the strong system-bath coupling regime. Despite this interest, a clear and unambiguous analysis of the regimes of validity of the polaron transformation is still lacking. Here we provide such a benchmark, comparing second order perturbation theory results in the original untransformed frame, the polaron frame, and the variational extension with numerically exact path integral calculations of the equilibrium reduced density matrix. Equilibrium quantities allow a direct comparison of the three methods without invoking any further approximations as is usually required in deriving master equations. It is found that the second order results in the original frame are accurate for weak system-bath coupling; the results deteriorate when the bath cut-off frequency decreases. The full polaron results are accurate for the entire range of coupling for a fast bath but only in the strong coupling regime for a slow bath. The variational method is capable of interpolating between these two methods and is valid over a much broader range of parameters.

Journal ArticleDOI
TL;DR: The effects of non-Poisson inter-event statistics on the dynamics of edges are examined, and the concept of a generalized master equation is applied to the study of continuous-time random walks on networks.
Abstract: The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.

Journal ArticleDOI
TL;DR: This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle the problem of Markovian reaction networks and provides an introduction to the emerging theory of thermodynamic analysis of such networks.
Abstract: Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underling population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions, the computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.

Journal ArticleDOI
TL;DR: A general framework is presented for accurately and efficiently estimating the phenomenological pressure-dependent rate coefficients for reaction networks of arbitrary size and complexity using only high-pressure-limit information and three methods of simplifying the full master equation model of the network are discussed.
Abstract: A general framework is presented for accurately and efficiently estimating the phenomenological pressure-dependent rate coefficients for reaction networks of arbitrary size and complexity using only high-pressure-limit information. Two aspects of this framework are discussed in detail. First, two methods of estimating the density of states of the species in the network are presented, including a new method based on characteristic functional group frequencies. Second, three methods of simplifying the full master equation model of the network to a single set of phenomenological rates are discussed, including a new method based on the reservoir state and pseudo-steady state approximations. Both sets of methods are evaluated in the context of the chemically-activated reaction of acetyl with oxygen. All three simplifications of the master equation are usually accurate, but each fails in certain situations, which are discussed. The new methods usually provide good accuracy at a computational cost appropriate for automated reaction mechanism generation.

Journal ArticleDOI
TL;DR: In this article, a coarse-grain collisional model was developed to describe the internal energy relaxation and dissociation processes based on a smaller number of equations, as opposed to existing reduced models assuming thermal equilibrium between the rotational and translational energy modes.

Journal ArticleDOI
TL;DR: In this paper, a general set of fluctuation relations for systems governed by a Lindblad master equation is derived, which provide quantum versions of Jarzynski-Hatano-Sasa and Crooks relations.
Abstract: An open quantum system interacting with its environment can be modeled under suitable assumptions as a Markov process, described by a Lindblad master equation. In this work, we derive a general set of fluctuation relations for systems governed by a Lindblad equation. These identities provide quantum versions of Jarzynski-Hatano-Sasa and Crooks relations. In the linear response regime, these fluctuation relations yield a fluctuation-dissipation theorem (FDT) valid for a stationary state arbitrarily far from equilibrium. For a closed system, this FDT reduces to the celebrated Callen-Welton-Kubo formula.

Journal ArticleDOI
TL;DR: The authors argue that the LNA can be more convincingly derived in a way that does not involve either the truncated Kramers-Moyal equation or the system-size expansion, and shows that the CLE will be valid, at least for a limited span of time, for any system that is sufficiently close to the thermodynamic limit.
Abstract: The linear noise approximation (LNA) is a way of approximating the stochastic time evolution of a well-stirred chemically reacting system. It can be obtained either as the lowest order correction to the deterministic chemical reaction rate equation (RRE) in van Kampen's system-size expansion of the chemical master equation (CME), or by linearising the two-term-truncated chemical Kramers-Moyal equation. However, neither of those derivations sheds much light on the validity of the LNA. The problematic character of the system-size expansion of the CME for some chemical systems, the arbitrariness of truncating the chemical Kramers-Moyal equation at two terms, and the sometimes poor agreement of the LNA with the solution of the CME, have all raised concerns about the validity and usefulness of the LNA. Here, the authors argue that these concerns can be resolved by viewing the LNA as an approximation of the chemical Langevin equation (CLE). This view is already implicit in Gardiner's derivation of the LNA from the truncated Kramers-Moyal equation, as that equation is mathematically equivalent to the CLE. However, the CLE can be more convincingly derived in a way that does not involve either the truncated Kramers-Moyal equation or the system-size expansion. This derivation shows that the CLE will be valid, at least for a limited span of time, for any system that is sufficiently close to the thermodynamic (large-system) limit. The relatively easy derivation of the LNA from the CLE shows that the LNA shares the CLE's conditions of validity, and it also suggests that what the LNA really gives us is a description of the initial departure of the CLE from the RRE as we back away from the thermodynamic limit to a large but finite system. The authors show that this approach to the LNA simplifies its derivation, clarifies its limitations, and affords an easier path to its solution.

Journal ArticleDOI
TL;DR: In this paper, the power output and efficiency of a single orbital noninteracting quantum dot thermoelectric setup was evaluated using the Pauli master equation approach. But the authors only considered the case of vanishing coupling to the contacts, where no electrical power is extracted.
Abstract: In the absence of phonon contribution, a weakly coupled single orbital noninteracting quantum dot thermoelectric setup is known to operate reversibly as a Carnot engine. This reversible operation, however, occurs only in the ideal case of vanishing coupling to the contacts, wherein the transmission function is delta shaped, and under open-circuit conditions, where no electrical power is extracted. In this paper, we delve into the thermoelectric performance of quantum dot systems by analyzing the power output and efficiency directly evaluated from the nonequilibrium electric and energy currents across them. In the case of interacting quantum dots, the nonequilibrium currents in the limit of weak coupling to the contacts are evaluated using the Pauli master equation approach. The following fundamental aspects of the thermoelectric operation of a quantum dot setup are discussed in detail: (a) With a finite coupling to the contacts, a thermoelectric setup always operates irreversibly under open-circuit conditions, with a zero efficiency. (b) Operation at a peak efficiency close to the Carnot value is possible under a finite power operation. In the noninteracting single orbital case, the peak efficiency approaches the Carnot value as the coupling to the contacts becomes smaller. In the interacting case, this trend depends nontrivially on the interaction parameter $U$. (c) The evaluated trends of the maximum efficiency derived from the nonequilibrium currents deviate considerably from the conventional figure of merit $zT$-based results. Finally, we also analyze the interacting quantum dot setup for thermoelectric operation at maximum power output.

Journal ArticleDOI
TL;DR: In this paper, a detailed error analysis of a Rydberg blockade mediated controlled-not-quantum gate between two neutral atoms is presented, where the primary sources of gate error are identified and suggestions for future improvements.
Abstract: We present a detailed error analysis of a Rydberg blockade mediated controlled-not quantum gate between two neutral atoms as demonstrated recently in Isenhower et al. [Phys. Rev. Lett. 104, 010503 (2010)] and Zhang et al. [Phys. Rev. A 82, 030306 (2010)]. Numerical solutions of a master equation for the gate dynamics, including all known sources of technical error, are shown to be in good agreement with experiments. The primary sources of gate error are identified and suggestions given for future improvements. We also present numerical simulations of quantum process tomography to find the intrinsic fidelity, neglecting technical errors, of a Rydberg blockade controlled phase gate. The gate fidelity is characterized using trace overlap and trace distance measures. We show that the trace distance is linearly sensitive to errors arising from the finite Rydberg blockade shift and introduce a modified pulse sequence which corrects the linear errors. Our analysis shows that the intrinsic gate error extracted from simulated quantum process tomography can be under 0.002 for specific states of ${}^{87}$Rb or Cs atoms. The relation between the process fidelity and the gate error probability used in calculations of fault tolerance thresholds is discussed.

Book
05 Sep 2012
TL;DR: In this paper, a distribution, BBGKY hierarchy, density operator, probability density as a fluid, microscopic balance equations density operator and onsager relations are discussed. And the linear response theory, fluctuation-disipation theorem, correlation functions are defined and properties.
Abstract: Part 1 Stochastic processes and the master equation: stochastic processes Markovian processes master equations Kramers Moyal expansion Brownian motion, Langevian and Fokker-Planck equations. Part 2 Distribution, BBGKY hierarchy, density operator: probability density as a fluid BBGKY hierarchy microscopic balance equations density operator. Part 3 Linear nonequilibrium thermodynamics and onsager relations: onsager regretion to equilibrium hipotesis onsager relations minimum production of entropy. Part 4 Linear response theory, fluctuation-disipation theorem: correlation functions - definitions and properties linear response theory fluctuation-disipation theorem. Part 5 Instabilities and far from equilibrium phase-transitions: instabilities, bifurcations, limit circles noise induced transitions pattern formation - reaction-diffusion pattern propagation.

Journal ArticleDOI
TL;DR: In this article, weakly nonlinear passive materials for prospective applications in integrated quantum photonics were proposed, where strong enhancement of native optical nonlinearities by electromagnetic field confinement in photonic crystal resonators can lead to single-photon generation only exploiting the quantum interference of two coupled modes and the effect of photon blockade under resonant coherent driving.
Abstract: We propose the use of weakly nonlinear passive materials for prospective applications in integrated quantum photonics. It is shown that strong enhancement of native optical nonlinearities by electromagnetic field confinement in photonic crystal resonators can lead to single-photon generation only exploiting the quantum interference of two coupled modes and the effect of photon blockade under resonant coherent driving. For realistic system parameters in state of the art microcavities, the efficiency of such single-photon source is theoretically characterized by means of the second-order correlation function at zero time delay as the main figure of merit, where major sources of loss and decoherence are taken into account within a standard master equation treatment. These results could stimulate the realization of integrated quantum photonic devices based on non-resonant material media, fully integrable with current semiconductor technology and matching the relevant telecom band operational wavelengths, as an alternative to single-photon nonlinear devices based on cavity-QED with artificial atoms or single atomic-like emitters.