scispace - formally typeset
Search or ask a question
Topic

Master equation

About: Master equation is a research topic. Over the lifetime, 10541 publications have been published within this topic receiving 276095 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In d-dimensional lattices of coupled quantum harmonic oscillators, analytical solutions of the heat current through the quantum system in the nonequilibrium steady state are provided using the rotating-wave approximation and bath interactions described by a master equation of Lindblad form.
Abstract: In d-dimensional lattices of coupled quantum harmonic oscillators, we analyze the heat current caused by two thermal baths of different temperatures, which are coupled to opposite ends of the lattice, with a focus on the validity of Fourier's law of heat conduction. We provide analytical solutions of the heat current through the quantum system in the nonequilibrium steady state using the rotating-wave approximation and bath interactions described by a master equation of Lindblad form. The influence of local dephasing in the transition of ballistic to diffusive transport is investigated.

92 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed error analysis of a Rydberg blockade mediated controlled-not-quantum gate between two neutral atoms is presented, where the primary sources of gate error are identified and suggestions for future improvements.
Abstract: We present a detailed error analysis of a Rydberg blockade mediated controlled-not quantum gate between two neutral atoms as demonstrated recently in Isenhower et al. [Phys. Rev. Lett. 104, 010503 (2010)] and Zhang et al. [Phys. Rev. A 82, 030306 (2010)]. Numerical solutions of a master equation for the gate dynamics, including all known sources of technical error, are shown to be in good agreement with experiments. The primary sources of gate error are identified and suggestions given for future improvements. We also present numerical simulations of quantum process tomography to find the intrinsic fidelity, neglecting technical errors, of a Rydberg blockade controlled phase gate. The gate fidelity is characterized using trace overlap and trace distance measures. We show that the trace distance is linearly sensitive to errors arising from the finite Rydberg blockade shift and introduce a modified pulse sequence which corrects the linear errors. Our analysis shows that the intrinsic gate error extracted from simulated quantum process tomography can be under 0.002 for specific states of ${}^{87}$Rb or Cs atoms. The relation between the process fidelity and the gate error probability used in calculations of fault tolerance thresholds is discussed.

92 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study wave equations with energy-dependent potentials and show under which conditions such equations can be handled as evolution equations of quantum theory with an energy dependent potential.
Abstract: We study wave equations with energy-dependent potentials. Simple analytical models are found useful to illustrate difficulties encountered with the calculation and interpretation of observables. A formal analysis shows under which conditions such equations can be handled as evolution equation of quantum theory with an energy-dependent potential. Once these conditions are met, such theory can be transformed into ordinary quantum theory.

92 citations

Journal ArticleDOI
TL;DR: In this paper, exact master equations describing the decay of a two-state system into a structured reservoir are constructed by employing the exact solution for the model, analytical expressions are determined for the memory kernel of the Nakajima-Zwanzig master equation and for the generator of the corresponding time-convolutionless master equation.
Abstract: Exact master equations describing the decay of a two-state system into a structured reservoir are constructed. By employing the exact solution for the model, analytical expressions are determined for the memory kernel of the Nakajima-Zwanzig master equation and for the generator of the corresponding time-convolutionless master equation. This approach allows an explicit comparison of the convergence behavior of the corresponding perturbation expansions. Moreover, the structure of widely used phenomenological master equations with a memory kernel may be incompatible with a nonperturbative treatment of the underlying microscopic model. Several physical implications of the results on the microscopic analysis and the phenomenological modeling of non-Markovian quantum dynamics of open systems are discussed.

92 citations

Journal ArticleDOI
TL;DR: A formalism based on the master equation is adopted and it is shown how the probability density for the position of a molecular motor at a given time can be solved exactly in Fourier-Laplace space.
Abstract: Dynamic biological processes such as enzyme catalysis, molecular motor translocation, and protein and nucleic acid conformational dynamics are inherently stochastic processes. However, when such processes are studied on a nonsynchronized ensemble, the inherent fluctuations are lost, and only the average rate of the process can be measured. With the recent development of methods of single-molecule manipulation and detection, it is now possible to follow the progress of an individual molecule, measuring not just the average rate but the fluctuations in this rate as well. These fluctuations can provide a great deal of detail about the underlying kinetic cycle that governs the dynamical behavior of the system. However, extracting this information from experiments requires the ability to calculate the general properties of arbitrarily complex theoretical kinetic schemes. We present here a general technique that determines the exact analytical solution for the mean velocity and for measures of the fluctuations. We adopt a formalism based on the master equation and show how the probability density for the position of a molecular motor at a given time can be solved exactly in Fourier-Laplace space. With this analytic solution, we can then calculate the mean velocity and fluctuation-related parameters, such as the randomness parameter (a dimensionless ratio of the diffusion constant and the velocity) and the dwell time distributions, which fully characterize the fluctuations of the system, both commonly used kinetic parameters in single-molecule measurements. Furthermore, we show that this formalism allows calculation of these parameters for a much wider class of general kinetic models than demonstrated with previous methods.

92 citations


Network Information
Related Topics (5)
Quantum
60K papers, 1.2M citations
94% related
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
94% related
Ground state
70K papers, 1.5M citations
92% related
Phase transition
82.8K papers, 1.6M citations
89% related
Excited state
102.2K papers, 2.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023140
2022344
2021431
2020460
2019420
2018427