scispace - formally typeset
Search or ask a question
Topic

Master equation

About: Master equation is a research topic. Over the lifetime, 10541 publications have been published within this topic receiving 276095 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The quantum-stochastic-differential-equation formulation of driven quantum-optical systems is carried out in the interaction picture, and quantum stochastic differential equations for wave functions are derived on the basis of physical principles.
Abstract: The quantum-stochastic-differential-equation formulation of driven quantum-optical systems is carried out in the interaction picture, and quantum stochastic differential equations for wave functions are derived on the basis of physical principles. The Ito form is shown to be the most practical, since it already contains all the radiation reaction terms. The connection between this formulation and the master equation is shown to be very straightforward. In particular, a direct connection is made to the theory of continuous measurements, which leads directly to the method of quantum-jump simulations of solutions of the master equation. It is also shown that all conceivable spectral and correlation-function information in output fields is accessible by means of an augmentation of the simulation process. Finally, the question of the reality of the jumps used in the simulations is posed.

342 citations

Journal ArticleDOI
TL;DR: It is shown that under certain conditions the resonant transport in mesoscopic systems can be described by modified (quantum) rate equations, which resemble the optical Bloch equations with some additional terms.
Abstract: It is shown that under certain conditions the resonant transport in mesoscopic systems can be described by modified (quantum) rate equations, which resemble the optical Bloch equations with some additional terms. Detailed microscopic derivation from the many-body Schr\"odinger equation is presented. Special attention is paid to the Coulomb blockade and quantum coherence effects in coupled quantum dot systems. The distinction between classical and quantum descriptions of resonant transport is clearly manifested in the modified rate equations. \textcopyright{} 1996 The American Physical Society.

341 citations

Journal ArticleDOI
TL;DR: A formulation of stochastic thermodynamics for systems subjected to nonequilibrium constraints and furthermore driven by external time-dependent forces is proposed, leading to a splitting of the second law leading to three second-law-like relations.
Abstract: We propose a formulation of stochastic thermodynamics for systems subjected to nonequilibrium constraints (i.e. broken detailed balance at steady state) and furthermore driven by external time-dependent forces. A splitting of the second law occurs in this description leading to three second-law-like relations. The general results are illustrated on specific solvable models. The present paper uses a master equation based approach.

340 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study the general properties of evolution equations for ϱ and argue that any more general equation for φ violates either locality or energy-momentum conservation.

334 citations

Journal ArticleDOI
TL;DR: This article presents an exact solution formula of the CME for arbitrary initial conditions in the case where the underlying system is governed by monomolecular reactions, expressed in terms of the convolution of multinomial and product Poisson distributions with time-dependent parameters evolving according to the traditional reaction-rate equations.
Abstract: The stochastic dynamics of a well-stirred mixture of molecular species interacting through different biochemical reactions can be accurately modelled by the chemical master equation (CME). Research in the biology and scientific computing community has concentrated mostly on the development of numerical techniques to approximate the solution of the CME via many realizations of the associated Markov jump process. The domain of exact and/or efficient methods for directly solving the CME is still widely open, which is due to its large dimension that grows exponentially with the number of molecular species involved. In this article, we present an exact solution formula of the CME for arbitrary initial conditions in the case where the underlying system is governed by monomolecular reactions. The solution can be expressed in terms of the convolution of multinomial and product Poisson distributions with time-dependent parameters evolving according to the traditional reaction-rate equations. This very structured representation allows to deduce easily many properties of the solution. The model class includes many interesting examples. For more complex reaction systems, our results can be seen as a first step towards the construction of new numerical integrators, because solutions to the monomolecular case provide promising ansatz functions for Galerkin-type methods.

329 citations


Network Information
Related Topics (5)
Quantum
60K papers, 1.2M citations
94% related
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
94% related
Ground state
70K papers, 1.5M citations
92% related
Phase transition
82.8K papers, 1.6M citations
89% related
Excited state
102.2K papers, 2.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023143
2022347
2021434
2020463
2019422
2018428