scispace - formally typeset
Search or ask a question
Topic

Master equation

About: Master equation is a research topic. Over the lifetime, 10541 publications have been published within this topic receiving 276095 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the stability of spherically symmetric thin shells to linearized perturbations around static solutions is analyzed and a master equation which dictates the stable equilibrium configurations is derived.
Abstract: We analyse the stability of generic spherically symmetric thin shells to linearized perturbations around static solutions. We include the momentum flux term in the conservation identity, deduced from the ‘ADM’ constraint and the Lanczos equations. Following the Ishak–Lake analysis, we deduce a master equation which dictates the stable equilibrium configurations. Considering the transparency condition, we study the stability of thin shells around black holes, showing that our analysis is in agreement with previous results. Applying the analysis to traversable wormhole geometries, by considering specific choices for the form function, we deduce stability regions and find that the latter may be significantly increased by considering appropriate choices for the redshift function.

122 citations

Journal ArticleDOI
TL;DR: The general form of a master equation is derived describing the reduced time evolution of a sequence of subsystems "propagating" in an environment which can be described as a sequences of subenvironments.
Abstract: We derive the general form of a master equation describing the reduced time evolution of a sequence of subsystems "propagating" in an environment which can be described as a sequence of subenvironments. The interaction between subsystems and subenvironments is described in terms of a collision model, with the irreversible dynamics of the subenvironments between collisions explicitly taken into account. In the weak coupling regime, we show that the collisional model produces a correlated Markovian evolution for the joint density matrix of the multipartite system. The associated Lindblad superoperator contains pairwise terms describing cross correlation between the different subsystems. Such a model can describe a broad range of physical situations, ranging from quantum channels with memory to photon propagation in concatenated quantum optical systems.

121 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the dynamics of a nanomechanical resonator coupled to a single-electron transistor (SET) in the regime where the resonator behaves classically.
Abstract: We analyze the dynamics of a nanomechanical resonator coupled to a single-electron transistor (SET) in the regime where the resonator behaves classically. A master equation is derived describing the dynamics of the coupled system which is then used to obtain equations of motion for the average charge state of the SET and the average position of the resonator. We show that the action of the SET on the resonator is very similar to that of a thermal bath, as it leads to a steady-state probability distribution for the resonator which can be described by mean values of the resonator position, a renormalized frequency, an effective temperature, and an intrinsic damping constant. Including the effects of extrinsic damping and finite temperature, we find that there remain experimentally accessible regimes where the intrinsic damping of the resonator still dominates its behavior. We also obtain the average current through the SET as a function of the coupling to the resonator.

121 citations

Journal ArticleDOI
TL;DR: The finite-rate performance of a quantum heat engine, constructed from a three-level amplifier, is analyzed and it is shown that the standard assumption of field-independent dissipation is inconcistent with thermodynamics.
Abstract: The finite-rate performance of a quantum heat engine, constructed from a three-level amplifier, is analyzed. Consistent definitions of thermodynamical quantities in terms of quantum observables are postulated. The performance is analyzed in steady state, where the operation of the amplifier only influences the surroundings. Quantum master equations describe the irreversible dynamics induced by the coupling of the working medium to the reservoirs. It is shown that the standard assumption of field-independent dissipation is inconcistent with thermodynamics. Field-dependent relaxation equations, based upon the semigroup approach, and consistent with thermodynamics, are formulated. These equations are valid if the time scale of the external field is slow compared to that associated with the bath fluctuations. The steady-state values of the thermodynamical quantities are evaluated. The power is found to have maxima as a function of important controls, such as the field amplitude, frequency, and the coupling with the baths. The existence and locations of these maxima differ from those obtained in the standard treatment, where the dissipation is field independent. The irreversible nature of engine operation is due to the finite rate of heat transfer and a genuine ``quantum-friction'' loss term due to dephasing.

121 citations

Journal ArticleDOI
TL;DR: The stochastic master equations, that is to say, quantum filters, and master equations for an arbitrary quantum system probed by a continuous-mode bosonic input field in two types of non-classical states are derived.
Abstract: We derive the stochastic master equations, that is to say, quantum filters, and master equations for an arbitrary quantum system probed by a continuous-mode bosonic input field in two types of nonclassical states. Specifically, we consider the cases where the state of the input field is a superposition or combination of (1) a continuous-mode, single-photon wave packet and vacuum, and (2) any continuous-mode coherent states.

121 citations


Network Information
Related Topics (5)
Quantum
60K papers, 1.2M citations
94% related
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
94% related
Ground state
70K papers, 1.5M citations
92% related
Phase transition
82.8K papers, 1.6M citations
89% related
Excited state
102.2K papers, 2.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023140
2022344
2021431
2020460
2019420
2018427