scispace - formally typeset

Topic

Matching (statistics)

About: Matching (statistics) is a(n) research topic. Over the lifetime, 30172 publication(s) have been published within this topic receiving 569864 citation(s). The topic is also known as: matched samples.
Papers
More filters

Journal ArticleDOI
Stéphane Mallat1, Zhifeng Zhang1Institutions (1)
TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Abstract: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive time-frequency transform. They derive a signal energy distribution in the time-frequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. They compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser see (IEEE Trans. Informat. Theory, vol. 38, Mar. 1992). >

8,847 citations


Journal ArticleDOI
Abstract: We describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and gray-level variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations in the model parameters and the induced image errors.

6,025 citations


Journal ArticleDOI
Peter C. Austin1Institutions (1)
TL;DR: The propensity score is a balancing score: conditional on the propensity score, the distribution of observed baseline covariates will be similar between treated and untreated subjects, and different causal average treatment effects and their relationship with propensity score analyses are described.
Abstract: The propensity score is the probability of treatment assignment conditional on observed baseline characteristics. The propensity score allows one to design and analyze an observational (nonrandomized) study so that it mimics some of the particular characteristics of a randomized controlled trial. In particular, the propensity score is a balancing score: conditional on the propensity score, the distribution of observed baseline covariates will be similar between treated and untreated subjects. I describe 4 different propensity score methods: matching on the propensity score, stratification on the propensity score, inverse probability of treatment weighting using the propensity score, and covariate adjustment using the propensity score. I describe balance diagnostics for examining whether the propensity score model has been adequately specified. Furthermore, I discuss differences between regression-based methods and propensity score-based methods for the analysis of observational data. I describe different causal average treatment effects and their relationship with propensity score analyses.

5,778 citations


Journal ArticleDOI
Paul R. Rosenbaum1, Donald B. Rubin2Institutions (2)
Abstract: Matched sampling is a method for selecting units from a large reservoir of potential controls to produce a control group of modest size that is similar to a treated group with respect to the distribution of observed covariates. We illustrate the use of multivariate matching methods in an observational study of the effects of prenatal exposure to barbiturates on subsequent psychological development. A key idea is the use of the propensity score as a distinct matching variable.

5,140 citations


Journal ArticleDOI
Marco Caliendo, Sabine Kopeinig1Institutions (1)
Abstract: Propensity score matching (PSM) has become a popular approach to estimate causal treatment effects. It is widely applied when evaluating labour market policies, but empirical examples can be found in very diverse fields of study. Once the researcher has decided to use PSM, he is confronted with a lot of questions regarding its implementation. To begin with, a first decision has to be made concerning the estimation of the propensity score. Following that one has to decide which matching algorithm to choose and determine the region of common support. Subsequently, the matching quality has to be assessed and treatment effects and their standard errors have to be estimated. Furthermore, questions like 'what to do if there is choice-based sampling?' or 'when to measure effects?' can be important in empirical studies. Finally, one might also want to test the sensitivity of estimated treatment effects with respect to unobserved heterogeneity or failure of the common support condition. Each implementation step involves a lot of decisions and different approaches can be thought of. The aim of this paper is to discuss these implementation issues and give some guidance to researchers who want to use PSM for evaluation purposes.

4,814 citations


Network Information
Related Topics (5)
Regression analysis

31K papers, 1.7M citations

73% related
Estimator

97.3K papers, 2.6M citations

73% related
Unemployment

60.4K papers, 1.3M citations

72% related
Inference

36.8K papers, 1.3M citations

71% related
Socioeconomic status

35K papers, 1.2M citations

70% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202232
20211,599
20201,813
20192,060
20181,994
20171,846