scispace - formally typeset
Search or ask a question
Topic

Material flow

About: Material flow is a research topic. Over the lifetime, 3050 publications have been published within this topic receiving 36844 citations. The topic is also known as: material stream.


Papers
More filters
Patent
04 Feb 1994
TL;DR: In this article, an approach for dispensing a material, such as by meltblowing, where the apparatus provides a flow of air in a first direction and a material in a second direction at an angle with respect to the first direction, is presented.
Abstract: Apparatus for dispensing a material, such as by meltblowing, wherein the apparatus provides a flow of air in a first direction and a flow of material in a second direction at an angle with respect to the first direction, and wherein the air flow contacts the material flow and propels the material in a direction substantially parallel to the first direction of the air flow for deposition on a desired substrate.

32 citations

Journal ArticleDOI
TL;DR: An agent-based distributed computational experiment framework with in-depth study of material flow, information flow and time flow modeling in supply chain networks is proposed and a case of virtual supply chain network is developed to illustrate the application of the framework.
Abstract: This paper focuses on research on virtual supply chain networks instead of real supply chain networks by making use of agent technology and computational experiment method. However, the recent research is inefficient in computational experiment modeling and lack of a related methodological framework. This paper proposes an agent-based distributed computational experiment framework with in-depth study of material flow, information flow and time flow modeling in supply chain networks. In this framework, a matrix-based formal representation method for material flow, a task-centered representation method for information flow and an agent-based time synchronization mechanism for time flow are proposed to aid building a high quality computational experiment model for a multi-layer supply chain network. In order to conduct the model, a computational experiment architecture for virtual supply chain networks is proposed. In this architecture, coordination mechanisms among agents based on material flow, information flow and time flow as well as consistency check methods for computational experiment models are discussed. Finally, an implementation architecture of the framework is given and a case of virtual supply chain network is developed to illustrate the application of the framework. The computational experiment results of the case show that the proposed framework, not only feasible but correct, has sound advantages in virtual supply chain network development, computational experiment modeling and implementation.

32 citations

Journal ArticleDOI
TL;DR: In this article, the performance of four material model sets of the Johnson-Cook constitutive equation in modeling the deformation behavior of Ti6Al4V alloy is compared with results from orthogonal cutting experiments on a tube of the work material.
Abstract: The machining of titanium alloys poses several inherent difficulties owing to their unique mechanical properties and cutting characteristics. Finite element (FE) simulations have reduced the burden of extensive experimental trials in understanding the deformation behavior and optimize the cutting process. The FE code relies on the qualitative nature of inputs such as material flow stress model, friction conditions, fracture criterions and the accuracy of the modeling process. The aim of this paper is to assess the performance of four material model sets of the Johnson-Cook (JC) constitutive equation in modeling the deformation behavior of Ti6Al4V alloy. The FE output at steady state conditions is compared with results from orthogonal cutting experiments on a tube of the work material. The effect of the parameters of the JC law and the capabilities of the constitutive equation are analyzed. The FE model is excellent in predicting the effective stress, strain and temperature, but produces marginal deviations in cutting force and chip morphology predictions and under predicts the feed forces. The material model constants computed through an evolutionary computational optimization process and those with conditions similar to machining produced good correlation with experiments.

32 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a roadmap for improving the energy efficiency of a manufacturing plant, through increasing transparency in material and energy flows to derive detailed feasibility studies of improvement measures and applicability.

31 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe a method for obtaining preliminary shapes of controlled strain rate extrusion dies, a special case being the constant strain rate die, which can be verified using the finite element method or physical modeling.
Abstract: The workability of a material during deformation processing is determined by (a) the die geometry which, in turn, determines the flow field during deformation, and, (b) the inherent workability of the material under the imposed processing conditions of strain rate and temperature. Most common alloys have good inherent workability and can be successfully formed over wide ranges of temperature and strain rate. Products can be successfully formed from these alloys even with dies which impose large variations in strain rate during deformation. However, many of the new alloys and composites can be deformed only in very narrow processing regimes, and control of the strain rate during deformation of such materials becomes important. For example, extrusion of a whisker-reinforced aluminum alloy composite is possible only when the strain rate is controlled to within one order of magnitude. This paper describes the development of a method for obtaining preliminary shapes of controlled strain rate extrusion dies, a special case being the constant strain rate die. The theoretical basis for such die design processes is presented, followed by some examples of die geometries. Since this design procedure ignores the material flow properties, the designed die shapes must be verified using the finite element method or physical modeling. Results of simulations with the program ALPID are also presented.

31 citations


Network Information
Related Topics (5)
Supply chain
84.1K papers, 1.7M citations
81% related
Microstructure
148.6K papers, 2.2M citations
77% related
Sustainable development
101.4K papers, 1.5M citations
76% related
Alloy
171.8K papers, 1.7M citations
75% related
Ultimate tensile strength
129.2K papers, 2.1M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022221
2021110
2020139
2019174
2018167