scispace - formally typeset
Search or ask a question
Topic

Material flow

About: Material flow is a research topic. Over the lifetime, 3050 publications have been published within this topic receiving 36844 citations. The topic is also known as: material stream.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of including the tool probe in the numerical modelling of three-dimensional heat flow in friction stir welding (FSW) and established the sliding, sticking, or partial sliding/sticking condition.
Abstract: The objective of the present paper is to investigate the effect of including the tool probe in the numerical modelling of three-dimensional heat flow in friction stir welding (FSW). The heat flow close to the probe/matrix interface is investigated. In the models presented, the heat is forced to flow around the 'probe hole'. In this manner, the material flow through the probe region, which often characterises other thermal models of FSW, is avoided. This necessitates controlling the convective heat flow by prescribing the velocity field in the narrow shear layer at the tool/matrix interface. As a consequence the sliding, sticking, or partial sliding/sticking condition can be modelled. Six cases are established, which are represented by three stages of refinement of the heat source model, combined with two different contact conditions, i.e. full sliding and full sticking.

132 citations

Journal ArticleDOI
TL;DR: In this article, the effect of pin thread on the material flow during FSW of an Al-Mg-Zn alloy by using numerical simulation based on computational fluid dynamics (CFD).
Abstract: Pin thread is one of the most common geometrical features for the friction stir welding (FSW) tools. The main purpose of employing the pin thread is to improve the in-process material flow behaviors during FSW. However, it has not been fully understood how exactly the pin thread influences the material flow because of the lack of in-process observation. In this study, we aim to analyze the effect of pin thread on the in-process material flow during FSW of an Al-Mg-Zn alloy by using numerical simulation based on computational fluid dynamics (CFD). In our numerical simulation, the transient rotation of the threaded pin is implemented explicitly via fully transient control of the zone motion, and the mechanical interaction at the tool-workpiece interface is considered via the recent developed shear-stress-based frictional boundary condition. The numerical simulation has been validated by the experimental measured temperatures at 8 different locations, the distribution of marker materials and the geometry of deformation zone in the weld. Based on the numerical simulation results, three effects of the pin thread on the material flow have been elucidated. First, accelerated flow velocity and enhanced strain rate is induced owing to the use of the pin thread, which is attributed to the fact that the interfacial sticking is preferable inside the thread groove opening. Second, the pin thread has an effect to trap material in the high-velocity zone inside the thread groove opening, which causes a many-circle flow pattern around the threaded pin. Third, the pin thread contributes to a vertical pressure gradient, which is important for the in-process material transfer from the top to the bottom. The approaches and concepts in this study can be applied for further fundamental investigation of FSW and the computer aided design of the welding tools.

131 citations

Journal ArticleDOI
TL;DR: In this article, a 3D Lagrangian incremental finite element method (FEM) simulation of friction stir processing (FSP) was developed to predict defect types, temperature distribution, effective plastic strain, and especially material flow in the weld zone.

130 citations

Journal ArticleDOI
TL;DR: In this article, material flow and plastic deformation in ultrasonic vibration enhanced friction stir welding are visualized by employing a special marker material and welding procedure, and three methods are developed to evaluate the volume of deformed material, the material flow velocity and the strain/strain rate.

129 citations

Journal ArticleDOI
TL;DR: To optimize these two objectives simultaneously, four-echelon network model is mathematically represented considering the associated constraints, capacity, production and shipment costs and solved using swarm intelligence based Multi-objective Hybrid Particle Swarm Optimization (MOHPSO) algorithm.
Abstract: This paper aims at multi-objective optimization of single-product for four-echelon supply chain architecture consisting of suppliers, production plants, distribution centers (DCs) and customer zones (CZs). The key design decisions considered are: the number and location of plants in the system, the flow of raw materials from suppliers to plants, the quantity of products to be shipped from plants to DCs, from DCs to CZs so as to minimize the combined facility location and shipment costs subject to a requirement that maximum customer demands be met. To optimize these two objectives simultaneously, four-echelon network model is mathematically represented considering the associated constraints, capacity, production and shipment costs and solved using swarm intelligence based Multi-objective Hybrid Particle Swarm Optimization (MOHPSO) algorithm. This evolutionary based algorithm incorporates non-dominated sorting algorithm into particle swarm optimization so as to allow this heuristic to optimize two objective functions simultaneously. This can be used as decision support system for location of facilities, allocation of demand points and monitoring of material flow for four-echelon supply chain network.

129 citations


Network Information
Related Topics (5)
Supply chain
84.1K papers, 1.7M citations
81% related
Microstructure
148.6K papers, 2.2M citations
77% related
Sustainable development
101.4K papers, 1.5M citations
76% related
Alloy
171.8K papers, 1.7M citations
75% related
Ultimate tensile strength
129.2K papers, 2.1M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022221
2021110
2020139
2019174
2018167