scispace - formally typeset
Search or ask a question
Topic

Matrix (mathematics)

About: Matrix (mathematics) is a research topic. Over the lifetime, 105562 publications have been published within this topic receiving 1952102 citations. The topic is also known as: mathematical matrix.


Papers
More filters
Journal ArticleDOI
TL;DR: An efficient means for generating mutation data matrices from large numbers of protein sequences is presented, by means of an approximate peptide-based sequence comparison algorithm, which is fast enough to process the entire SWISS-PROT databank in 20 h on a Sun SPARCstation 1, and is fastenough to generate a matrix from a specific family or class of proteins in minutes.
Abstract: An efficient means for generating mutation data matrices from large numbers of protein sequences is presented here. By means of an approximate peptide-based sequence comparison algorithm, the set sequences are clustered at the 85% identity level. The closest relating pairs of sequences are aligned, and observed amino acid exchanges tallied in a matrix. The raw mutation frequency matrix is processed in a similar way to that described by Dayhoff et al. (1978), and so the resulting matrices may be easily used in current sequence analysis applications, in place of the standard mutation data matrices, which have not been updated for 13 years. The method is fast enough to process the entire SWISS-PROT databank in 20 h on a Sun SPARCstation 1, and is fast enough to generate a matrix from a specific family or class of proteins in minutes. Differences observed between our 250 PAM mutation data matrix and the matrix calculated by Dayhoff et al. are briefly discussed.

6,355 citations

Book
30 Nov 1961
TL;DR: In this article, the authors propose Matrix Methods for Parabolic Partial Differential Equations (PPDE) and estimate of Acceleration Parameters, and derive the solution of Elliptic Difference Equations.
Abstract: Matrix Properties and Concepts.- Nonnegative Matrices.- Basic Iterative Methods and Comparison Theorems.- Successive Overrelaxation Iterative Methods.- Semi-Iterative Methods.- Derivation and Solution of Elliptic Difference Equations.- Alternating-Direction Implicit Iterative Methods.- Matrix Methods for Parabolic Partial Differential Equations.- Estimation of Acceleration Parameters.

5,317 citations

Journal ArticleDOI
TL;DR: This paper develops a simple first-order and easy-to-implement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank, and develops a framework in which one can understand these algorithms in terms of well-known Lagrange multiplier algorithms.
Abstract: This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Off-the-shelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple first-order and easy-to-implement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative, produces a sequence of matrices $\{\boldsymbol{X}^k,\boldsymbol{Y}^k\}$, and at each step mainly performs a soft-thresholding operation on the singular values of the matrix $\boldsymbol{Y}^k$. There are two remarkable features making this attractive for low-rank matrix completion problems. The first is that the soft-thresholding operation is applied to a sparse matrix; the second is that the rank of the iterates $\{\boldsymbol{X}^k\}$ is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On the theoretical side, we provide a convergence analysis showing that the sequence of iterates converges. On the practical side, we provide numerical examples in which $1,000\times1,000$ matrices are recovered in less than a minute on a modest desktop computer. We also demonstrate that our approach is amenable to very large scale problems by recovering matrices of rank about 10 with nearly a billion unknowns from just about 0.4% of their sampled entries. Our methods are connected with the recent literature on linearized Bregman iterations for $\ell_1$ minimization, and we develop a framework in which one can understand these algorithms in terms of well-known Lagrange multiplier algorithms.

5,276 citations

Journal ArticleDOI
TL;DR: It is proved that one can perfectly recover most low-rank matrices from what appears to be an incomplete set of entries, and that objects other than signals and images can be perfectly reconstructed from very limited information.
Abstract: We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfectly recover most low-rank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys $$m\ge C\,n^{1.2}r\log n$$ for some positive numerical constant C, then with very high probability, most n×n matrices of rank r can be perfectly recovered by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold for arbitrary rectangular matrices as well. Our results are connected with the recent literature on compressed sensing, and show that objects other than signals and images can be perfectly reconstructed from very limited information.

5,274 citations


Network Information
Related Topics (5)
Differential equation
88K papers, 2M citations
89% related
Nonlinear system
208.1K papers, 4M citations
88% related
Boundary value problem
145.3K papers, 2.7M citations
86% related
Bounded function
77.2K papers, 1.3M citations
86% related
Partial differential equation
70.8K papers, 1.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2022128
20214,533
20205,211
20195,464
20185,097
20174,632