Topic

# Maximum a posteriori estimation

About: Maximum a posteriori estimation is a(n) research topic. Over the lifetime, 7486 publication(s) have been published within this topic receiving 222291 citation(s). The topic is also known as: Maximum a posteriori, MAP & maximum a posteriori probability.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.

Abstract: We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.

18,328 citations

••

[...]

TL;DR: In this paper, the authors proposed an iterative method for scene reconstruction based on a non-degenerate Markov Random Field (MRF) model, where the local characteristics of the original scene can be represented by a nondegenerate MRF and the reconstruction can be estimated according to standard criteria.

Abstract: may 7th, 1986, Professor A. F. M. Smith in the Chair] SUMMARY A continuous two-dimensional region is partitioned into a fine rectangular array of sites or "pixels", each pixel having a particular "colour" belonging to a prescribed finite set. The true colouring of the region is unknown but, associated with each pixel, there is a possibly multivariate record which conveys imperfect information about its colour according to a known statistical model. The aim is to reconstruct the true scene, with the additional knowledge that pixels close together tend to have the same or similar colours. In this paper, it is assumed that the local characteristics of the true scene can be represented by a nondegenerate Markov random field. Such information can be combined with the records by Bayes' theorem and the true scene can be estimated according to standard criteria. However, the computational burden is enormous and the reconstruction may reflect undesirable largescale properties of the random field. Thus, a simple, iterative method of reconstruction is proposed, which does not depend on these large-scale characteristics. The method is illustrated by computer simulations in which the original scene is not directly related to the assumed random field. Some complications, including parameter estimation, are discussed. Potential applications are mentioned briefly.

4,401 citations

••

[...]

TL;DR: Developments that reduce the computational costs of the underlying maximum a posteriori (MAP) algorithm, as well as statistical considerations that yield new insights into the accuracy with which the relative orientations of individual particles may be determined are described.

Abstract: RELION, for REgularized LIkelihood OptimizatioN, is an open-source computer program for the refinement of macromolecular structures by single-particle analysis of electron cryo-microscopy (cryo-EM) data. Whereas alternative approaches often rely on user expertise for the tuning of parameters, RELION uses a Bayesian approach to infer parameters of a statistical model from the data. This paper describes developments that reduce the computational costs of the underlying maximum a posteriori (MAP) algorithm, as well as statistical considerations that yield new insights into the accuracy with which the relative orientations of individual particles may be determined. A so-called gold-standard Fourier shell correlation (FSC) procedure to prevent overfitting is also described. The resulting implementation yields high-quality reconstructions and reliable resolution estimates with minimal user intervention and at acceptable computational costs.

3,502 citations

••

[...]

TL;DR: The EM (expectation-maximization) algorithm is ideally suited to problems of parameter estimation, in that it produces maximum-likelihood (ML) estimates of parameters when there is a many-to-one mapping from an underlying distribution to the distribution governing the observation.

Abstract: A common task in signal processing is the estimation of the parameters of a probability distribution function Perhaps the most frequently encountered estimation problem is the estimation of the mean of a signal in noise In many parameter estimation problems the situation is more complicated because direct access to the data necessary to estimate the parameters is impossible, or some of the data are missing Such difficulties arise when an outcome is a result of an accumulation of simpler outcomes, or when outcomes are clumped together, for example, in a binning or histogram operation There may also be data dropouts or clustering in such a way that the number of underlying data points is unknown (censoring and/or truncation) The EM (expectation-maximization) algorithm is ideally suited to problems of this sort, in that it produces maximum-likelihood (ML) estimates of parameters when there is a many-to-one mapping from an underlying distribution to the distribution governing the observation The EM algorithm is presented at a level suitable for signal processing practitioners who have had some exposure to estimation theory

2,436 citations

••

[...]

TL;DR: A framework for maximum a posteriori (MAP) estimation of hidden Markov models (HMM) is presented, and Bayesian learning is shown to serve as a unified approach for a wide range of speech recognition applications.

Abstract: In this paper, a framework for maximum a posteriori (MAP) estimation of hidden Markov models (HMM) is presented. Three key issues of MAP estimation, namely, the choice of prior distribution family, the specification of the parameters of prior densities, and the evaluation of the MAP estimates, are addressed. Using HMM's with Gaussian mixture state observation densities as an example, it is assumed that the prior densities for the HMM parameters can be adequately represented as a product of Dirichlet and normal-Wishart densities. The classical maximum likelihood estimation algorithms, namely, the forward-backward algorithm and the segmental k-means algorithm, are expanded, and MAP estimation formulas are developed. Prior density estimation issues are discussed for two classes of applications/spl minus/parameter smoothing and model adaptation/spl minus/and some experimental results are given illustrating the practical interest of this approach. Because of its adaptive nature, Bayesian learning is shown to serve as a unified approach for a wide range of speech recognition applications. >

2,381 citations