scispace - formally typeset
Search or ask a question
Topic

Maximum a posteriori estimation

About: Maximum a posteriori estimation is a research topic. Over the lifetime, 7486 publications have been published within this topic receiving 222291 citations. The topic is also known as: Maximum a posteriori, MAP & maximum a posteriori probability.


Papers
More filters
Journal ArticleDOI
TL;DR: A maximum a posteriori (MAP) approach to linearized image reconstruction using knowledge of the noise variance of the measurements and the covariance of the conductivity distribution has the advantage of an intuitive interpretation of the algorithm parameters as well as fast image reconstruction.
Abstract: Dynamic electrical impedance tomography (EIT) images changes in the conductivity distribution of a medium from low frequency electrical measurements made at electrodes on the medium surface. Reconstruction of the conductivity distribution is an under-determined and ill-posed problem, typically requiring either simplifying assumptions or regularization based on a priori knowledge. This paper presents a maximum a posteriori (MAP) approach to linearized image reconstruction using knowledge of the noise variance of the measurements and the covariance of the conductivity distribution. This approach has the advantage of an intuitive interpretation of the algorithm parameters as well as fast (near real time) image reconstruction. In order to compare this approach to existing algorithms, the authors develop figures of merit to measure the reconstructed image resolution, the noise amplification of the image reconstruction, and the fidelity of positioning in the image. Finally, the authors develop a communications systems approach to calculate the probability of detection of a conductivity contrast in the reconstructed image as a function of the measurement noise and the reconstruction algorithm used.

273 citations

Journal ArticleDOI
TL;DR: In this paper, the numerical technique of the maximum likelihood method to estimate the parameters of Gamma distribution is examined and the bias of the estimates is investigated numerically, the empirical result indicates that the bias bias of both parameter estimates produced by the maximum-likelihood method is positive.
Abstract: The numerical technique of the maximum likelihood method to estimate the parameters of Gamma distribution is examined. A convenient table is obtained to facilitate the maximum likelihood estimation of the parameters and the estimates of the variance-covariance matrix. The bias of the estimates is investigated numerically. The empirical result indicates that the bias of both parameter estimates produced by the maximum likelihood method is positive.

271 citations

Proceedings ArticleDOI
05 Apr 2000
TL;DR: This work exploits the property of the sources to have a sparse representation in a corresponding signal dictionary, which provides faster and more robust computations, when there are an equal number of sources and mixtures.
Abstract: The blind source separation problem is to extract the underlying source signals from a set of their linear mixtures, where the mixing matrix is unknown. This situation is common, eg in acoustics, radio, and medical signal processing. We exploit the property of the sources to have a sparse representation in a corresponding signal dictionary. Such a dictionary may consist of wavelets, wavelet packets, etc., or be obtained by learning from a given family of signals. Starting from the maximum a posteriori framework, which is applicable to the case of more sources than mixtures, we derive a few other categories of objective functions, which provide faster and more robust computations, when there are an equal number of sources and mixtures. Our experiments with artificial signals and with musical sounds demonstrate significantly better separation than other known techniques.

270 citations

Journal ArticleDOI
TL;DR: An online (recursive) algorithm is proposed that estimates the parameters of the mixture and that simultaneously selects the number of components to search for the maximum a posteriori (MAP) solution and to discard the irrelevant components.
Abstract: There are two open problems when finite mixture densities are used to model multivariate data: the selection of the number of components and the initialization. In this paper, we propose an online (recursive) algorithm that estimates the parameters of the mixture and that simultaneously selects the number of components. The new algorithm starts with a large number of randomly initialized components. A prior is used as a bias for maximally structured models. A stochastic approximation recursive learning algorithm is proposed to search for the maximum a posteriori (MAP) solution and to discard the irrelevant components.

269 citations

Posted Content
TL;DR: The metric normalized validation error (NVE) is introduced in order to further investigate the potential and limitations of deep learning-based decoding with respect to performance and complexity.
Abstract: We revisit the idea of using deep neural networks for one-shot decoding of random and structured codes, such as polar codes. Although it is possible to achieve maximum a posteriori (MAP) bit error rate (BER) performance for both code families and for short codeword lengths, we observe that (i) structured codes are easier to learn and (ii) the neural network is able to generalize to codewords that it has never seen during training for structured, but not for random codes. These results provide some evidence that neural networks can learn a form of decoding algorithm, rather than only a simple classifier. We introduce the metric normalized validation error (NVE) in order to further investigate the potential and limitations of deep learning-based decoding with respect to performance and complexity.

267 citations


Network Information
Related Topics (5)
Estimator
97.3K papers, 2.6M citations
86% related
Deep learning
79.8K papers, 2.1M citations
85% related
Convolutional neural network
74.7K papers, 2M citations
85% related
Feature extraction
111.8K papers, 2.1M citations
85% related
Image processing
229.9K papers, 3.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202364
2022125
2021211
2020244
2019250
2018236