Showing papers on "MDS matrix published in 2020"
TL;DR: The fixed XOR operation in AES rounds is replaced with a dual dynamic XOR table by using a 3D chaotic map and results show that the proposed method is better than the original AES.
Abstract: An efficient approach to secure information is critically needed at present. Cryptography remains the best approach to achieve security. On this basis, the national institute of standards and technology (NIST) selected Rijndael, which is a symmetric block cipher, as the advanced encryption standard (AES). The MixColumns transformation of this cipher is the most important function within the linear unit and the major source of diffusion. Dynamic MixColumns transformation can be used to enhance the AES security. In this study, a method to enhance the AES security is developed on the basis of two methods. The first method is an extension of a previous study entitled “A novel Approach for Enhancing Security of Advance Encryption Standard using Private XOR Table and 3D chaotic regarding to Software quality Factor.” In the current study, the fixed XOR operation in AES rounds is replaced with a dual dynamic XOR table by using a 3D chaotic map. The dual dynamic XOR table is based on 4 bits; one is used for even rounds, and the other is used for odd rounds. The second method is dynamic MixColumns transformation, where the maximum distance separable (MDS) matrix of the MixColumns transformation, which is fixed and public in every round, is changed with a dynamic MDS matrix, which is private, by using a 3D chaotic map. A 3D chaotic map is used to generate secret keys. These replacements enhance the AES security, particularly the resistance against attacks. Diehard and NIST tests, entropy, correlation coefficient, and histogram are used for security analysis of the proposed method. C++ is used to implement the proposed and original algorithms. MATLAB and LINX are used for the security analysis. Results show that the proposed method is better than the original AES.
3 citations
TL;DR: With the aid of the proposed family of matrices, some well-known diffusion layers including the cyclic AES-like matrices and some recursive MDS diffusion layers could be made dynamic, at little extra cost in software.
Abstract: Maximum distance separable (MDS) matrices play a crucial role in symmetric ciphers as diffusion layers. Dynamic diffusion layers for software applications are less considered up to now. Dynamic (randomised) components could make symmetric ciphers more resistant against statistical and algebraic attacks. In this paper, after some theoretical investigation we present a family of parametric n × n, binary matrices Aα, n = 4t, such that for 4t many α ∈ Fn2 the matrices Aα, A3α ⊕ I and A7α ⊕ I are non-singular. With the aid of the proposed family of matrices, some well-known diffusion layers including the cyclic AES-like matrices and some recursive MDS diffusion layers could be made dynamic, at little extra cost in software. Then, we provide new families of MDS matrices which could be used as dynamic diffusion layers, using the proposed family of matrices. The implementation cost of every member in the presented families of MDS diffusion layers (except one cyclic family) is equal to its inverse. The proposed diffusion layers have a suitable implementation cost on a variety of modern processors.
1 citations
Patent•
19 Jun 2020
TL;DR: In this paper, a novel high-security lightweight ECEG block cipher implementation method and system and a storage medium was proposed, key expansion is carried out based on an NP difficult problem of elliptic curve discrete logarithm, and the expansion enables a password attacker to be difficult to infer what an original key is even if the password attacker obtains a key of an intermediate round, so the security of the password is further improved.
Abstract: The invention provides a novel high-security lightweight ECEG block cipher implementation method and system and a storage medium. Key expansion is carried out based on an NP difficult problem of elliptic curve discrete logarithm, and the expansion enables a password attacker to be difficult to infer what an original key is even if the password attacker obtains a key of an intermediate round, so the security of the password is further improved, and the ECDLP is applied to the field of encryption and decryption of the block password for the first time; besides, the technical scheme of the invention further provides an extended generalized Feistel structure, which is different from a conventional Feistel structure, an MDS matrix is generated after four times of iteration, the MDS matrix mainly plays a diffusion role in the whole cryptographic algorithm, and the matrix is utilized to perform column obfuscation operation. The diffusion layer formed by the MDS matrix can optimally resist differential attacks and linear attacks, and the security of the algorithm in the technical scheme can be further improved when the diffusion layer is applied to the technical scheme of the invention.
04 Dec 2020
TL;DR: In this paper, a method for securing different types of images (binary, gray scale, true color and index) based on stream cipher (RC4A) and MDS (Maximum Distance Separable) matrix is proposed.
Abstract: Stream ciphers are extensively used over a wide range of applications including security of digital data. In this paper, a method for securing different types of images (binary, gray scale, true color and index) based on stream cipher (RC4A) and MDS (Maximum Distance Separable) matrix is proposed. The proposed scheme is based on the cryptographic Permutation-Substitution Network (PSN) and hence achieves Shannon’s confusion-diffusion characteristics required for a robust encryption algorithm. The scheme encrypts a digital image into a random-like image from human visual as well as statistical point of view. Several encryption evaluation metrics are applied on test images to empirically assess the performance and efficiency of the proposed method. The consequences of these statistical and security tests support the concreteness of the proposed approach.
TL;DR: An opposite approach to studying elements for which x → ax could be implemented with only one XOR in hardware, which gives provable binary n × n one-XOR matrices for which the mentioned conditions hold.
Abstract: MDS diffusion layers are critical in the design of modern symmetric ciphers. Lightweight MDS matrices are studied for designing ciphers targeting hardware-oriented applications. In 2016, Be...