scispace - formally typeset
Search or ask a question
Topic

Medical imaging

About: Medical imaging is a research topic. Over the lifetime, 16549 publications have been published within this topic receiving 356105 citations. The topic is also known as: scanning & diagnostic imaging.


Papers
More filters
Book
01 Jan 1987
TL;DR: Properties of Computerized Tomographic Imaging provides a tutorial overview of topics in tomographic imaging covering mathematical principles and theory and how to apply the theory to problems in medical imaging and other fields.
Abstract: Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions. The impact of tomography in diagnostic medicine has been revolutionary, since it has enabled doctors to view internal organs with unprecedented precision and safety to the patient. There are also numerous nonmedical imaging applications which lend themselves to methods of computerized tomography, such as mapping of underground resources...cross-sectional imaging of for nondestructive testing...the determination of the brightness distribution over a celestial sphere...three-dimensional imaging with electron microscopy. Principles of Computerized Tomographic Imaging provides a tutorial overview of topics in tomographic imaging covering mathematical principles and theory...how to apply the theory to problems in medical imaging and other fields...several variations of tomography that are currently being researched.

5,620 citations

Journal ArticleDOI
TL;DR: Progress continues in the development of smaller, more penetrable probes for biological imaging, and the number of probes in this line of research has increased.
Abstract: Progress continues in the development of smaller, more penetrable probes for biological imaging.

3,420 citations

Journal ArticleDOI
TL;DR: Radiomics--the high-throughput extraction of large amounts of image features from radiographic images--addresses this problem and is one of the approaches that hold great promises but need further validation in multi-centric settings and in the laboratory.

3,411 citations

Journal ArticleDOI
TL;DR: A review of methods for the forward and inverse problems in optical tomography can be found in this paper, where the authors focus on the highly scattering case found in applications in medical imaging, and to the problem of absorption and scattering reconstruction.
Abstract: We present a review of methods for the forward and inverse problems in optical tomography. We limit ourselves to the highly scattering case found in applications in medical imaging, and to the problem of absorption and scattering reconstruction. We discuss the derivation of the diffusion approximation and other simplifications of the full transport problem. We develop sensitivity relations in both the continuous and discrete case with special concentration on the use of the finite element method. A classification of algorithms is presented, and some suggestions for open problems to be addressed in future research are made.

2,609 citations

Journal ArticleDOI
TL;DR: Although MRI, US, and x-ray CT are often listed as molecular imaging modalities, in truth, radionuclide and optical imaging are the most practical modalities for molecular imaging, because of their sensitivity and the specificity for target detection.
Abstract: In vivo medical imaging has made great progress due to advances in the engineering of imaging devices and developments in the chemistry of imaging probes Several modalities have been utilized for medical imaging, including X-ray radiography and computed tomography (x-ray CT), radionuclide imaging using single photons and positrons, magnetic resonance imaging (MRI), ultrasonography (US), and optical imaging In order to extract more information from imaging, “contrast agents” have been employed For example, organic iodine compounds have been used in X-ray radiography and computed tomography, superparamagnetic or paramagnetic metals have been used in MRI, and microbubbles have been used in ultrasonography Most of these, however, are non-targeted reagents Molecular imaging is widely considered the future for medical imaging Molecular imaging has been defined as the in vivo characterization and measurement of biologic process at the cellular and molecular level1, or more broadly as a technique to directly or indirectly monitor and record the spatio-temporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic, or therapeutic application2 Molecular imaging is the logical next step in the evolution of medical imaging after anatomic imaging (eg x-rays) and functional imaging (eg MRI) In order to attain truly targeted imaging of specific molecules which exist in relatively low concentrations in living tissues, the imaging techniques must be highly sensitive Although MRI, US, and x-ray CT are often listed as molecular imaging modalities, in truth, radionuclide and optical imaging are the most practical modalities, for molecular imaging, because of their sensitivity and the specificity for target detection Radionuclide imaging, including gamma scintigraphy and positron emission tomography (PET), are highly sensitive, quantitative, and offer the potential for whole body scanning However, radionuclide imaging methods have the disadvantages of poor spatial and temporal resolution3 Additionally, they require radioactive compounds which have an intrinsically limited half life, and which expose the patient and practitioner to ionizing radiation and are therefore subject to a variety of stringent safety regulations which limit their repeated use4 Optical imaging, on the other hand, has comparable sensitivity to radionuclide imaging, and can be “targeted” if the emitting fluorophore is conjugated to a targeting ligand3 Optical imaging, by virtue of being “switchable”, can result in very high target to background ratios “Switchable” or activatable optical probes are unique in the field of molecular imaging since these agents can be turned on in specific environments but otherwise remain undetectable This improves the achievable target to background ratios, enabling the detection of small tumors against a dark background5,6 This advantage must be balanced against the lack of quantitation with optical imaging due to unpredictable light scattering and absorption, especially when the object of interest is deep within the tissue Visualization through the skin is limited to superficial tissues such as the breast7-9 or lymph nodes10,11 The fluorescence signal from the bright GFP-expressing tumors can be seen in the deep organ only in the nude mice 12,13 However, optical molecular imaging can also be employed during endoscopy14 or surgery 15,16

1,851 citations


Network Information
Related Topics (5)
Image quality
52.7K papers, 787.9K citations
90% related
Iterative reconstruction
41.2K papers, 841.1K citations
90% related
Magnetic resonance imaging
61K papers, 1.5M citations
85% related
Radiation therapy
76.3K papers, 2M citations
82% related
Diffusion MRI
13.3K papers, 563.2K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023383
2022816
2021831
2020865
2019860
2018791