scispace - formally typeset
Search or ask a question
Topic

Melibiose

About: Melibiose is a research topic. Over the lifetime, 1002 publications have been published within this topic receiving 27300 citations. The topic is also known as: Melibiose.


Papers
More filters
Journal Article
TL;DR: α-Galactosidase from A. oryzae DR-5 was induced in the presence of melibiose, raffinose, galactose, and locust bean galactomannan and was a glycoprotein in nature by activity staining and exhibited the optimum pH and temperature at 4.7 and 60°C.
Abstract: α-Galactosidase from A. oryzae DR-5 was induced in the presence of melibiose, raffinose, galactose, and locust bean galactomannan. The enzyme was purified to homogeneity by precipitation with acetone followed by ion-exchange chromatography using DEAE-Sephacel. The purified enzyme showed a single band in both nondenaturing-PAGE and SDS-PAGE. The enzyme was a glycoprotein in nature by activity staining. The molecular weight of the purified enzyme was 93- 95 kDa by SDS-PAGE. The enzyme exhibited the optimum pH and temperature at 4.7 and 60°C, respectively. α-Galactosidase activity was strongly inhibited by Ag 2+ , Hg 2+ , Cu 2+ , and galactose. EDTA, 1,10-phenanthraline, and PMSF did not inhibit the enzyme activity, whereas N-bromosuccinimide completely inhibited enzyme activity. Investigation by TLC showed complete hydrolysis of stachyose and raffinose in soymilk in 3 h at pH 5.0 and 50C.

8 citations

Journal ArticleDOI
TL;DR: Melibiose-derived oligosaccharides showed bifidogenic effect as potential prebiotics and triggered the production of anti-inflammatory cytokine IL-10 and pro- inflammatory cytokine TNF-α depending on their concentrations.

8 citations

Journal ArticleDOI
TL;DR: The enzyme alpha-galactosidase offers potential to (i) eliminate possibly the flatus-inducing factor(s) in edible beans, (ii) eliminate raffinose during beet-sugar processing, and (iii) determine r Affinose analytically.
Abstract: The enzyme alpha-galactosidase offers potential to (i) eliminate possibly the flatus-inducing factor(s) in edible beans, (ii) eliminate raffinose during beet-sugar processing, and (iii) determine raffinose analytically. Accordingly, 20 genera of the order Actinomycetales Buchanan 1917 were tested for evidence of alpha-galactosidase activity. Test filtrates were prepared with a medium containing D-galactose and soybean meal. Enzyme activity was demonstrated through cellulose thin-layer chromatography. Of 123 strains tested, 28 produced extracellular alpha-galactosidase. Almost all were streptomycetes. Members of the genera Actinoplanes Couch 1950, Micromonospora varphiOrskov 1923, and Promicromonospora Krasil'nikov et al. 1961 also exhibited alpha-galactosidase activity. Additional tests led to the selection of five strains whose filtrates degraded melibiose, raffinose, and stachyose but not lactose and sucrose. Tests also were made with several soybean preparations.

8 citations

Journal ArticleDOI
TL;DR: Highly purified 1-O-IAGlc-SugAc shows maximum transferase activity with monosaccharides (mannose, glucose, and galactose), lower activity with disacchariding and trisaccharide (raffinose) and minimal enzymatic activity with oligosACcharides from the raffinose family as well.
Abstract: 1-O-(indole-3-acetyl)-β-d-glucose: sugar indoleacetyl transferase (1-O-IAGlc-SugAc) is a novel enzyme catalyzing the transfer of the indoleacetyl (IA) moiety from 1-O-(indole-3-acetyl)-β-d-glucose to several saccharides to form ester-linked IAA conjugates. 1-O-IAGlc-SugAc was purified from liquid endosperm of Zea mays by fractionation with ammonium sulphate, anion-exchange, Blue Sepharose chromatography, affinity chromatography on Concanavalin A-Sepharose, adsorption on hydroxylapatite and preparative PAGE. The obtained enzyme preparation indicates only one band of Rf 0.67 on 8% non-denaturing PAGE consisting of two polypeptides of 42 and 17 kDa in SDS/PAGE. Highly purified 1-O-IAGlc-SugAc shows maximum transferase activity with monosaccharides (mannose, glucose, and galactose), lower activity with disaccharides (melibiose, gentobiose) and trisaccharide (raffinose) and minimal enzymatic activity with oligosaccharides from the raffinose family as well. The novel acyltransferase exhibits, besides its primary indoleacetylation of sugar, minor hydrolytic and disproportionation activities producing free IAA and supposedly 1,2-di-O-(indole-3-acetyl)-β-glucose, respectively. Presumably, 1-O-IAGlc-SugAc, like 1-O-indole-3-acetyl-β-d-glucose-dependent myo-inositol acyltransferase (1-O-IAGlc-InsAc), is another member of the serine carboxypeptidase-like (SCPL) acyltransferase family.

8 citations

Journal ArticleDOI
TL;DR: Results indicate that the physicochemical properties and steric structure of RafNAc differ considerably from those of Raf, and these trisaccharides were more stable in acidic solution than Raf.
Abstract: Two kinds of oligosaccharides, N-acetylraffinosamine (RafNAc) and N-acetylplanteosamine (PlaNAc), were synthesized from N-acetylsucrosamine and melibiose using the transgalactosylation activity of Aspergillus niger α-galactosidase. RafNAc and PlaNAc are novel trisaccharides in which d-glucopyranose residues in raffinose (Raf) and planteose are replaced with N-acetyl-d-glucosamine. These trisaccharides were more stable in acidic solution than Raf. RafNAc was hydrolyzed more rapidly than Raf by α-galactosidase of green coffee bean. In contrast, RafNAc was not hydrolyzed by Saccharomyces cerevisiae invertase, although Raf was hydrolyzed well by this enzyme. These results indicate that the physicochemical properties and steric structure of RafNAc differ considerably from those of Raf.

8 citations


Network Information
Related Topics (5)
Yeast
31.7K papers, 868.9K citations
85% related
Gel electrophoresis
26K papers, 1.1M citations
83% related
Escherichia coli
59K papers, 2M citations
83% related
Operon
14.6K papers, 768.6K citations
82% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
202212
202112
202017
201913
201816