scispace - formally typeset
Search or ask a question
Topic

Melibiose

About: Melibiose is a research topic. Over the lifetime, 1002 publications have been published within this topic receiving 27300 citations. The topic is also known as: Melibiose.


Papers
More filters
Journal ArticleDOI
TL;DR: Through the analysis of disaccharide configuration, it was found that the glycation efficiency of the reducing disacCharide linked by a 1 → 6 glycoside bond was higher than that by a1 → 4 glycosides bond, and reducing sugar with β type was better than that with α type.
Abstract: Melibiose, cellobiose, maltose, lactose, turanose, and isomaltulose were selected to be glycated with OVA. The number of free amino groups of OVA modified with different disaccharides decreased, and the secondary and tertiary structures of the modified OVA also changed greatly. Moreover, the glycation sites detected by HPLC-HCD-MS/MS were all on the sensitized epitopes of OVA, which reduced the binding ability of IgG and IgE of glycated OVA. In addition, the glycation sites with the highest DSP in different samples were located in the irregular coil region of OVA. Among the six disaccharides, the glycation reaction between melibiose and OVA was the most obvious. Through the analysis of disaccharide configuration, it was found that the glycation efficiency of the reducing disaccharide linked by a 1 → 6 glycoside bond was higher than that by a 1 → 4 glycoside bond, and reducing sugar with β type was better than that with α type. These findings would provide a theoretical reference for the use of different sugars in food production.

4 citations

Journal ArticleDOI
TL;DR: Indications were found that the excretion process was limiting the rate of production of extracellular enzyme, and neoagaro-oligosaccharides was the best inducer among a variety of compounds tested.
Abstract: The regulation of the synthesis of extracellular agarase by Cytophaga flevensis was studied in resting-cell suspensions. Enzyme synthesis was strictly dependent on the presence of a suitable inducer. Enzyme production was maximal at 20 C in phosphate buffer pH 6.9 in the presence of 1.3mm calcium chloride, 0.03% casamino acids and inducer. Enzyme production was virtually the same at 15 and 20 C, reduced to 50% at 25 C and was not detectable at 30 C. It was highly stimulated by the presence of 0.03% of casamino acids in the incubation mixture and was also favoured by the presence of 1.3mm calcium ions. Of a variety of compounds tested, only melibiose or neoagaro-oligosaccharides were effective inducers. Among the neoagaro-oligosaccharides, neoagarotetraose was the best inducer. At higher concentrations of inducer compounds catabolite repression of enzyme synthesis was apparent. This was also found when glucose was added to the incubation mixture. This repression was not relieved by the addition of cyclic AMP. Indications were found that the excretion process was limiting the rate of production of extracellular enzyme.

4 citations

Journal ArticleDOI
TL;DR: The lipopolysacharide from Pseudomonas aeruginosa strain BI contains the receptors for phage 2 and strongly inactivates this phage in vitro (95-98% within 15 min), suggesting the possibility thatphage 2 receptors in lipopolysaccharide contain L-rhamnose, D-glucosamine, and (or) D- glucose, or a structurally related molecule.
Abstract: The lipopolysacharide from Pseudomonas aeruginosa strain BI contains the receptors for phage 2 and strongly inactivates this phage in vitro (95-98% within 15 min). Several mono- and di-saccharides tested reduced phage 2 inactivation to 50% when present at the following concentrations: D-glucosamine, 0.25 M; maltose, 0.3M; lactose and cellobiose, 0.5 M; D-glucose, L-rhamnose, D-mannose, 2-deoxy-D-glucose, and sucrose, 1.0 M; D-galactose, D-xylose, and N-acetyl-D-glucosamine, 1.4 M; and melibiose. greater than 1.6 M. These results suggest the possibility that phage 2 receptors in lipopolysaccharide contain L-rhamnose, D-glucosamine, and (or) D-glucose, or a structurally related molecule. Either one of the latter two could be located at a terminal position alpha-linked to the adjacent residue, or located internally in the polysaccharide chain linked through its C-4 position.

4 citations

Journal ArticleDOI
TL;DR: In this article, the thermodynamic properties of the Salmonella typhimurium MelB (MelBSt) were analyzed using three independent methods, including the determination of melting temperature, heat capacity change (ΔCp), and regulatory phosphotransferase EIIAGlc binding with isothermal titration calorimetry (ITC).
Abstract: MelB catalyzes the obligatory cotransport of melibiose with Na+, Li+, or H+. Crystal structure determination of the Salmonella typhimurium MelB (MelBSt) has revealed a typical major facilitator superfamily (MFS) fold at a periplasmic open conformation. Cooperative binding of Na+ and melibiose has been previously established. To determine why cotranslocation of sugar solute and cation is obligatory, we analyzed each binding in the thermodynamic cycle using three independent methods, including the determination of melting temperature by circular dichroism spectroscopy, heat capacity change (ΔCp), and regulatory phosphotransferase EIIAGlc binding with isothermal titration calorimetry (ITC). We found that MelBSt thermostability is increased by either substrate (Na+ or melibiose) and observed a cooperative effect of both substrates. ITC measurements showed that either binary formation yields a positive sign in the ΔCp, suggesting MelBSt hydration and a likely widening of the periplasmic cavity. Conversely, formation of a ternary complex yields negative values in ΔCp, suggesting MelBSt dehydration and cavity closure. Lastly, we observed that EIIAGlc, which has been suggested to trap MelBSt at an outward-open state, readily binds to the MelBSt apo state at an affinity similar to MelBSt/Na+. However, it has a suboptimal binding to the ternary state, implying that MelBSt in the ternary complex may be conformationally distant from the EIIAGlc-preferred outward-facing conformation. Our results consistently support the notion that binding of one substrate (Na+ or melibiose) favors MelBSt at open states, whereas the cooperative binding of both substrates triggers the alternating-access process, thus suggesting this conformational regulation could ensure the obligatory cotransport.

4 citations


Network Information
Related Topics (5)
Yeast
31.7K papers, 868.9K citations
85% related
Gel electrophoresis
26K papers, 1.1M citations
83% related
Escherichia coli
59K papers, 2M citations
83% related
Operon
14.6K papers, 768.6K citations
82% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
202212
202112
202017
201913
201816