scispace - formally typeset
Search or ask a question
Topic

Melibiose

About: Melibiose is a research topic. Over the lifetime, 1002 publications have been published within this topic receiving 27300 citations. The topic is also known as: Melibiose.


Papers
More filters
Journal ArticleDOI
TL;DR: Enzyme activity was specific for the alpha-1,6-galactosyl bond, and activity was demonstrated on melibiose and soy molasses, and enzyme activity was only slightly inhibited by 75-100 mM galactose, an end product of hydrolysis.
Abstract: Food ingredients containing alpha-1,6-galactoside bonds elicit gastrointestinal disturbances in monogastric animals, including humans. Pretreatment of such ingredients with alpha-galactosidase (EC 3.2.1.22) has the potential to alleviate this condition. For this purpose, a thermostable alpha-galactosidase from Thermoanaerobacterium polysaccharolyticum was purified by a combination of anion exchange and size exclusion chromatographies. The enzyme has a monomeric molecular weight of approximately 80 kDa; however, it is active as a dimer. The optimum temperature for enzyme activity is 77.5 degrees C. Approximately 84 and 88% of enzyme activity remained after 36.5 h of incubation at 70 and 65 degrees C, respectively. Optimum activity was observed at pH 8.0, with a broad range of activity from pH 5.0 to 9.0. Different transition metals had weak to strong inhibitory effects on enzyme activity. The K(m) and V(max) of the enzyme are 0.29-0.345 mM and 200-232 micromol/min/mg of protein, respectively. Importantly, enzyme activity was only slightly inhibited by 75-100 mM galactose, an end product of hydrolysis. Enzyme activity was specific for the alpha-1,6-galactosyl bond, and activity was demonstrated on melibiose and soy molasses.

27 citations

Journal ArticleDOI
TL;DR: Major conformational changes that are induced during melibiose binding/substrate translocation, like those denoted by intense peaks at 1668 and 1645 cm(-)(1), are similar for the three cotransporting cations.
Abstract: Fourier transform infrared difference spectroscopy has been used to obtain information about substrate-induced structural changes of the melibiose permease (MelB) from Escherichia coli reconstituted into liposomes. Binding of the cosubstrate Na(+) gives rise to several peaks in the amide I and II regions of the difference spectrum Na(+).MelB minus H(+).MelB, that denote the presence of conformational changes in all types of secondary structures (alpha-helices, beta-sheets, loops). In addition, peaks around 1400 and at 1740-1720 cm(-1) are indicative of changes in protonation/deprotonation or in environment of carboxylic groups. Binding of the cosubstrate Li(+) produces a difference spectrum that is also indicative of conformational changes, but that is at variance as compared to that induced by Na(+) binding. To analyze the following transport steps, the melibiose permease with either H(+), Na(+), or Li(+) bound was incubated with melibiose. The difference spectra obtained by subtracting the spectrum cation.MelB from the respective complex cation.melibiose.MelB were roughly similar among them, but different from those induced by cation binding, and more intense. Therefore, major conformational changes that are induced during melibiose binding/substrate translocation, like those denoted by intense peaks at 1668 and 1645 cm(-)(1), are similar for the three cotransporting cations. Changes in the protonation state and/or in the environment of given carboxylic residues were also induced by melibiose-MelB interaction in the presence of cations.

27 citations

Journal ArticleDOI
TL;DR: It is demonstrated that binding of the uncharged substrate melibiose triggers a charge displacement in the protein, which is explained by a conformational change with concomitant displacement of charged amino acid side chains and/or a reorientation of helix dipoles.
Abstract: Electrogenic events associated with the activity of the melibiose permease (MelB), a transporter from Escherichia coli, were investigated. Proteoliposomes containing purified MelB were adsorbed to a solid supported lipid membrane, activated by a substrate concentration jump, and transient currents were measured. When the transporter was preincubated with Na+ at saturating concentrations, a charge translocation in the protein upon melibiose binding could still be observed. This result demonstrates that binding of the uncharged substrate melibiose triggers a charge displacement in the protein. Further analysis showed that the charge displacement is neither related to extra Na+ binding to the transporter, nor to the displacement of already bound Na+ within the transporter. The electrogenic melibiose binding process is explained by a conformational change with concomitant displacement of charged amino acid side chains and/or a reorientation of helix dipoles. A kinetic model is suggested, in which Na+ and meli...

27 citations

Journal ArticleDOI
TL;DR: The phenotypic properties of an isogenic spontaneous mutant of Streptococcus salivarius ATCC 25975 and the data suggest that HPr regulates the preferential metabolism of PTS sugars over the non‐PTS sugars, lactose and melibiose, through the repression of the pertinent catabolic genes.
Abstract: Phosphorylation of HPr on a serine residue at position 46 (Ser-46) by an ATP-dependent protein kinase has been reported in several Gram-positive bacteria, and the resulting intermediate, HPr(Ser-P), has been shown to mediate inducer exclusion in lactococci and lactobacilli and catabolite repression in Bacillus subtilis and Bacillus megaterium. We report here the phenotypic properties of an isogenic spontaneous mutant (G22.4) of Streptococcus salivarius ATCC 25975, in which a missense mutation results in the replacement of isoleucine at position 47 (Ile-47) by threonine (Thr) in HPr. This substitution did not prevent the phosphorylation of HPr on Ser-46, nor did it impede the phosphorylation of HPr on His-15 by EI or the transfer of the phosphoryl group from HPr(His-P) to other PTS proteins. However, the 147T substitution did perturb, in glucose-grown but not in galactose-grown cells, the cellular equilibrium between the various forms of HPr, resulting in an increase in the amount of free HPr at the expense of HPr(His-P)(Ser-P); the levels of HPr(His-P) and HPr(Ser-P) were not affected. Growth on melibiose was virtually identical for the wild-type and mutant strains, whereas the generation time of the mutant on the other sugars tested (glucose, fructose, mannose, lactose and galactose) increased 1.2- to 1.5-fold. The preferential metabolism of PTS sugars (glucose and fructose) over non-PTS sugars (lactose and melibiose) that is observed in wild-type cells was abolished in cells of mutant G22.4. Moreover, alpha- and beta-galactosidases were derepressed in glucose- and fructose-grown cells of the mutant. The data suggest that HPr regulates the preferential metabolism of PTS sugars over the non-PTS sugars, lactose and melibiose, through the repression of the pertinent catabolic genes. This HPr-dependent repression, however, seems to occur solely when cells are growing on a PTS sugar.

27 citations

Journal ArticleDOI
TL;DR: The enzyme showed potential to splitting off α-1,3-bound terminal galactose residues from antigens of the human blood group B(III) erythrocytes and exerted the highest affinity with respect to the synthetic substrate p-NPhGal and maximal rate of hydrolysis, compared with natural substrates.

27 citations


Network Information
Related Topics (5)
Yeast
31.7K papers, 868.9K citations
85% related
Gel electrophoresis
26K papers, 1.1M citations
83% related
Escherichia coli
59K papers, 2M citations
83% related
Operon
14.6K papers, 768.6K citations
82% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
202212
202112
202017
201913
201816