scispace - formally typeset
Search or ask a question
Topic

Membrane protein

About: Membrane protein is a research topic. Over the lifetime, 30216 publications have been published within this topic receiving 1742089 citations. The topic is also known as: membrane protein & membrane protein of cell.


Papers
More filters
Journal ArticleDOI
TL;DR: Molecular genetic and biochemical studies described here suggest that, as in the case of growth factor receptors of higher eukaryotic cells, Ire1p oligomerizes in response to the accumulation of unfolded proteins in the ER and is phosphorylated in trans by otherIre1p molecules as a result of oligomerization.
Abstract: The transmembrane kinase Ire1p is required for activation of the unfolded protein response (UPR), the increase in transcription of genes encoding endoplasmic reticulum (ER) resident proteins that occurs in response to the accumulation of unfolded proteins in the ER. Ire1p spans the ER membrane (or the nuclear membrane with which the ER is continuous), with its kinase domain localized in the cytoplasm or in the nucleus. Consistent with this arrangement, it has been proposed that Ire1p senses the accumulation of unfolded proteins in the ER and transmits the signal across the membrane toward the transcription machinery, possibly by phosphorylating downstream components of the UPR pathway. Molecular genetic and biochemical studies described here suggest that, as in the case of growth factor receptors of higher eukaryotic cells, Ire1p oligomerizes in response to the accumulation of unfolded proteins in the ER and is phosphorylated in trans by other Ire1p molecules as a result of oligomerization. In addition to its kinase domain, a C-terminal tail domain of Ire1p is required for induction of the UPR. The role of the tail is probably to bind other proteins that transmit the unfolded protein signal to the nucleus.

12,185 citations

Journal ArticleDOI
TL;DR: A new membrane protein topology prediction method, TMHMM, based on a hidden Markov model is described and validated, and it is discovered that proteins with N(in)-C(in) topologies are strongly preferred in all examined organisms, except Caenorhabditis elegans, where the large number of 7TM receptors increases the counts for N(out)-C-in topologies.

11,453 citations

Journal ArticleDOI
23 Oct 1987-Science
TL;DR: Together, the adhesion proteins and their receptors constitute a versatile recognition system providing cells with anchorage, traction for migration, and signals for polarity, position, differentiation, and possibly growth.
Abstract: Rapid progress has been made in the understanding of the molecular interactions that result in cell adhesion. Many adhesive proteins present in extracellular matrices and in the blood contain the tripeptide arginine-glycine-aspartic acid (RGD) as their cell recognition site. These proteins include fibronectin, vitronectin, osteopontin, collagens, thrombospondin, fibrinogen, and von Willebrand factor. The RGD sequences of each of the adhesive proteins are recognized by at least one member of a family of structurally related receptors, integrins, which are heterodimeric proteins with two membrane-spanning subunits. Some of these receptors bind to the RGD sequence of a single adhesion protein only, whereas others recognize groups of them. The conformation of the RGD sequence in the individual proteins may be critical to this recognition specificity. On the cytoplasmic side of the plasma membrane, the receptors connect the extracellular matrix to the cytoskeleton. More than ten proved or suspected RGD-containing adhesion-promoting proteins have already been identified, and the integrin family includes at least as many receptors recognizing these proteins. Together, the adhesion proteins and their receptors constitute a versatile recognition system providing cells with anchorage, traction for migration, and signals for polarity, position, differentiation, and possibly growth.

4,821 citations

Book
01 Oct 1986
TL;DR: This paper discusses the physical properties of polypeptides, the structure of which has been determined Crystallographically to High Resolution and its role in the biosynthesis of Proteins.
Abstract: Chemical Properties of Polypeptides Biosynthesis of Proteins Evolutionary and Genetic Origins of Protein Sequences Physical Interactions that Determine the Properties of Proteins Conformational Properties of Polypeptide Chains The Folded Conformations of Globular Proteins Proteins in Solution and in Membranes Interactions with Other Molecules Enzyme Catalysis Degradation Appendix: References to Protein Structures Determined Crystallographically to High Resolution

4,285 citations

Book
01 Jan 1991
TL;DR: Part 1 BASIC STRUCTURAL PRINCIPLES: The Building Blocks and Motifs of Protein Structure and Part 2 STRUCTURE, FUNCTION and ENGINEERING: Structure, Function and Engineering.
Abstract: PART 1 BASIC STRUCTURAL PRINCIPLES 1. The Building Blocks 2. Motifs of Protein Structure 3. alpha-Domain Structures 4. alpha/ss Structures 5. ss Structures 6. Folding and Flexibility 7. DNA Structures PART 2 STRUCTURE, FUNCTION AND ENGINEERING 8. DNA Recognition in Procaryotes by Helix-Turn-Helix Motifs 9. DNA Recognition by Eukaryotic Transcription Factors 10. Specific Transcription Factors Belong to a Few Families 11. An Example of Enzyme Catalysis: Serine Proteinases 12. Membrane Proteins 13. Signal Transduction 14. Fibrous Proteins 15. Recognition of Foreign Molecules by the Immune System 16. The Structure of Spherical Viruses 17. Prediction, Engineering, and Design of Protein Structures 18. Determination of Protein Structures

3,714 citations


Network Information
Related Topics (5)
Peptide sequence
84.1K papers, 4.3M citations
95% related
Regulation of gene expression
85.4K papers, 5.8M citations
92% related
RNA
111.6K papers, 5.4M citations
92% related
Signal transduction
122.6K papers, 8.2M citations
92% related
Protein kinase A
68.4K papers, 3.9M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022392
2021727
2020711
2019667
2018757