scispace - formally typeset
Search or ask a question
Topic

Memistor

About: Memistor is a research topic. Over the lifetime, 608 publications have been published within this topic receiving 34905 citations.


Papers
More filters
Proceedings ArticleDOI
11 Dec 2012
TL;DR: The different memristor models are described and a Verilog-A implementation for these models, including the relevant window functions, are presented, suitable for EDA tools such as SPICE.
Abstract: Memristors are novel devices which can be used in applications such as memory, logic, analog circuits, and neuromorphic systems. Several memristor technologies have been developed such as ReRAM (Resistive RAM), MRAM (Magnetoresistance RAM), and PCM (Phase Change Memory). To design circuits with memristors, the behavior of the memristor needs to be described by a mathematical model. While the model for memristors should be sufficiently accurate as compared to the behavior of physical devices, the model must also be computationally efficient. Several models for memristors have been proposed — the linear ion drift model, the nonlinear ion drift model, the Simmons tunnel barrier model, and the ThrEshold Adaptive Memristor (TEAM) model. In this paper, the different memristor models are described and a Verilog-A implementation for these models, including the relevant window functions, are presented. These models are suitable for EDA tools such as SPICE.

61 citations

Journal ArticleDOI
TL;DR: The small variation range of memristance and the nonfloating operation that limit conventional memristor emulators are improved significantly and the circuit is designed to be built with off-the-shelf electronics devices.
Abstract: In this paper, we propose a memristor emulator that embraces most of features of a real memristor. The important features that a memristor emulator should include are a sufficiently wide range of memristance, bimodal operability of pulse and continuous signal inputs, a long period of nonvolatility, floating operation, operability with other devices, and the ability to be implemented with off-the-shelf devices. The proposed memristor emulator circuit contains all of these features. Specifically, the small variation range of memristance and the nonfloating operation that limit conventional memristor emulators are improved significantly. It is designed to be built with off-the-shelf electronics devices.

59 citations

Journal ArticleDOI
TL;DR: A scalable design flow for in-memory computing has been proposed, where a given multioutput logic function is synthesized as a netlist of NOT/NOR gates and then mapped to the crossbar using the Memristor-Aided loGIC (MAGIC) design style.
Abstract: Because of their resistive switching properties and ease of controlling the resistive states, memristors have been proposed in nonvolatile storage as well as logic design applications. Memristors can be fabricated in a crossbar and suitable voltages applied to the row and column nanowires to control their states. This makes it possible to move toward new non-von Neumann-type architectures, usually referred to as in-memory computing, where logic operations can be performed directly on the storage fabric. In this paper, a scalable design flow for in-memory computing has been proposed, where a given multioutput logic function is synthesized as a netlist of NOT/NOR gates and then mapped to the crossbar using the Memristor-Aided loGIC (MAGIC) design style. The memristors corresponding to the primary inputs are initialized a priori. Subsequently, the required gate operations are performed by applying suitable row and column voltages in sequence. Two alternate mapping schemes have been analyzed. The switching characteristics of MAGIC NOR gates have been evaluated using circuit simulation under the Cadence Virtuoso environment. Experimental evaluation on ISCAS'85 benchmarks reports the average improvements of 27.7%, 34.6%, and 26.2%, respectively over a recently published work with respect to the number of memristors, number of cycles, and total energy dissipation, respectively. It may be noted that the energy consumption of the gates used in the proposed approach (NOT and NOR) is significantly higher than that using CMOS technology.

58 citations

Journal ArticleDOI
TL;DR: It is found that the memristance, memcapacitance, and meminductance are caused by different combinations of nonlinear electric responses.
Abstract: Memristor, memcapacitor, and meminductor are new fundamental circuit elements, whose properties depend on the history of devices. This paper presents the physical analysis of these memory devices. Three simple examples are given for the memristor, memcapacitor, and meminductor, and are then generalized to reveal their general physical origin. It is found that the memristance, memcapacitance, and meminductance are caused by different combinations of nonlinear electric responses. The mathematical expressions for the currents through any voltage-driven memristor, memcapacitor, and meminductor are given, and the corresponding expressions for the memristance, memcapacitance, and meminductance are derived. Moreover, a method to determine the charge–flux relationship of a memristor is proposed.

58 citations

Proceedings ArticleDOI
01 Dec 2014
TL;DR: An optimized memristor-based full adder design by material implication logic is presented, which needs 27 memristors and less area in comparison with typical CMOS-based 8-bit full adders.
Abstract: Recently memristor-based applications and circuits are receiving an increased attention. Furthermore, memristors are also applied in logic circuit design. Material implication logic is one of the main areas with memristors. In this paper an optimized memristor-based full adder design by material implication logic is presented. This design needs 27 memristors and less area in comparison with typical CMOS-based 8-bit full adders. Also the presented full adder needs only 184 computational steps which enhance former full adder design speed by 20 percent.

57 citations


Network Information
Related Topics (5)
CMOS
81.3K papers, 1.1M citations
77% related
Integrated circuit
82.7K papers, 1M citations
75% related
Transistor
138K papers, 1.4M citations
74% related
Capacitor
166.6K papers, 1.4M citations
73% related
Capacitance
69.6K papers, 1M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202328
202277
20212
20201
20191
201815