scispace - formally typeset
Search or ask a question
Topic

Memistor

About: Memistor is a research topic. Over the lifetime, 608 publications have been published within this topic receiving 34905 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The VTEAM model extends the previously proposed ThrEshold Adaptive Memristor (TEAM) model, which describes current-controlled memristors and has similar advantages as the TEAM model, i.e., it is simple, general, and flexible, and can characterize different voltage-controlled Memristors.
Abstract: Memristors are novel electrical devices used for a variety of applications, including memory, logic circuits, and neuromorphic systems. Memristive technologies are attractive due to their nonvolatility, scalability, and compatibility with CMOS. Numerous physical experiments have shown the existence of a threshold voltage in some physical memristors. Additionally, as shown in this brief, some applications require voltage-controlled memristors to operate properly. In this brief, a Voltage ThrEshold Adaptive Memristor (VTEAM) model is proposed to describe the behavior of voltage-controlled memristors. The VTEAM model extends the previously proposed ThrEshold Adaptive Memristor (TEAM) model, which describes current-controlled memristors. The VTEAM model has similar advantages as the TEAM model, i.e., it is simple, general, and flexible, and can characterize different voltage-controlled memristors. The VTEAM model is accurate (below 1.5% in terms of the relative root-mean-square error) and computationally efficient as compared with existing memristor models and experimental results describing different memristive technologies.

564 citations

Journal ArticleDOI
TL;DR: An approach to use memristors (resistors with memory) in programmable analog circuits in which low voltages are applied to memristor during their operation as analog circuit elements and high voltage are used to program the Memristor's states.
Abstract: We suggest an approach to use memristors (resistors with memory) in programmable analog circuits. Our idea consists in a circuit design in which low voltages are applied to memristors during their operation as analog circuit elements and high voltages are used to program the memristor's states. This way, as it was demonstrated in recent experiments, the state of memristors does not essentially change during analog mode operation. As an example of our approach, we have built several programmable analog circuits demonstrating memristor-based programming of threshold, gain and frequency. In these circuits the role of memristor is played by a memristor emulator developed by us.

553 citations

Journal ArticleDOI
TL;DR: A practical implementation of a memristor based chaotic circuit that employs the four fundamental circuit elements — the resistor, capacitor, inductor and the Memristor using off-the-shelf components is provided.
Abstract: This paper provides a practical implementation of a memristor based chaotic circuit. We realize a memristor using off-the-shelf components and then construct the memristor along with the associated chaotic circuit on a breadboard. The goal is to construct a physical chaotic circuit that employs the four fundamental circuit elements — the resistor, capacitor, inductor and the memristor. The central concept behind the memristor circuit is to use an analog integrator to obtain the electric flux across the memristor and then use the flux to obtain the memristor's characterstic function.

522 citations

Journal ArticleDOI
TL;DR: In this article, an approach to use memristors (resistors with memory) in programmable analog circuits has been proposed, where low voltages are applied to the resistors during their operation as analog circuit elements and high voltages were used to program the memristor's states.
Abstract: We suggest an approach to use memristors (resistors with memory) in programmable analog circuits. Our idea consists in a circuit design in which low voltages are applied to memristors during their operation as analog circuit elements and high voltages are used to program the memristor's states. This way, as it was demonstrated in recent experiments, the state of memristors does not essentially change during analog mode operation. As an example of our approach, we have built several programmable analog circuits demonstrating memristor-based programming of threshold, gain and frequency.

389 citations

Journal ArticleDOI
TL;DR: The read operation of memristor-based memories is investigated and a new technique for solving the sneak paths problem by gating the memory cell using a three-terminal memistor device is introduced.

378 citations


Network Information
Related Topics (5)
CMOS
81.3K papers, 1.1M citations
77% related
Integrated circuit
82.7K papers, 1M citations
75% related
Transistor
138K papers, 1.4M citations
74% related
Capacitor
166.6K papers, 1.4M citations
73% related
Capacitance
69.6K papers, 1M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202328
202277
20212
20201
20191
201815