scispace - formally typeset
Search or ask a question
Topic

Meshfree methods

About: Meshfree methods is a research topic. Over the lifetime, 2216 publications have been published within this topic receiving 69596 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A 2D approach is considered to numerically analyse composite laminated beams using one of the most flexible and stable interpolation meshless technique available in the literature—the Radial Point Interpolation Method (RPIM).
Abstract: Laminated composite materials are widely implemented in several engineering constructions. For its relative light weight, these materials are suitable for aerospace, military, marine, and automotive structural applications. To obtain safe and economical structures, the modelling analysis accuracy is highly relevant. Since meshless methods in the recent years achieved a remarkable progress in computational mechanics, the present work uses one of the most flexible and stable interpolation meshless technique available in the literature—the Radial Point Interpolation Method (RPIM). Here, a 2D approach is considered to numerically analyse composite laminated beams. Both the meshless formulation and the equilibrium equations ruling the studied physical phenomenon are presented with detail. Several benchmark beam examples are studied and the results are compared with exact solutions available in the literature and the results obtained from a commercial finite element software. The results show the efficiency and accuracy of the proposed numeric technique.

7 citations

Journal ArticleDOI
TL;DR: In this paper, a mesh-free generalized finite difference method (GFDM) based on a cloud of numerical points is presented to simulate solution mining processes on microscopic and macroscopic scales.
Abstract: Experimental and field investigations for solution mining processes have improved intensely in recent years. Due to today’s computing capacities, three-dimensional simulations of potential salt solution caverns can further enhance the understanding of these processes. They serve as a “virtual prototype” of a projected site and support planning in reasonable time. In this contribution, we present a meshfree generalized finite difference method (GFDM) based on a cloud of numerical points that is able to simulate solution mining processes on microscopic and macroscopic scales, which differ significantly in both the spatial and temporal scales. Focusing on anticipated industrial requirements, Lagrangian and Eulerian formulations including an Arbitrary Lagrangian–Eulerian (ALE) approach are considered.

7 citations

Journal ArticleDOI
TL;DR: The hybrid scheme developed in the time domain to address the wave breaking impact on the structure is a reliable, robust, and efficient alternative for simulating fluid–structure interaction problems.

7 citations

Journal ArticleDOI
TL;DR: In this paper, small plant cell aggregates were simulated using a 3-D Smoothed Particle Hydrodynamics (SPH) and Coarse-Grained (CG) coupled computational approach to predict the morphological behavior during drying.

7 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
89% related
Numerical analysis
52.2K papers, 1.2M citations
86% related
Discretization
53K papers, 1M citations
86% related
Boundary value problem
145.3K papers, 2.7M citations
82% related
Partial differential equation
70.8K papers, 1.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202355
2022112
2021102
202092
201996
201897