scispace - formally typeset
Search or ask a question
Topic

Meshfree methods

About: Meshfree methods is a research topic. Over the lifetime, 2216 publications have been published within this topic receiving 69596 citations.


Papers
More filters
Journal Article
TL;DR: In this paper, a meshless point allocation method based on point interpolation is proposed to solve the Helmholtz problem, and the superiority of the proposed technique is verified using meshless allocation method.
Abstract: Because of amazing advantages of meshless numerical methods over classical finite difference methods and finite element methods,the point allocation method and its characteristics are introduced. Several techniques for derivative boundary conditions by meshless allocation method are summarized and a new technique based on integral interpolation is proposed. Using meshless allocation method based on point interpolation to solve Helmholtz problem,the superiority of the proposed technique is verified.

1 citations

Journal ArticleDOI
TL;DR: In this article, a semi-implicit time-stepping approach is proposed to compute the viscous forces in the context of smoothed particle hydrodynamics for non-Newtonian free-surface flows.
Abstract: Smoothed particle hydrodynamics (SPH) has become a popular numerical framework of choice for simulating free-surface flows, mainly for Newtonian fluids. The topic regarding the simulation of non-Newtonian free-surface flows, however, remains relatively untouched due to difficulties regarding the computation of viscous forces. In previous approaches, the viscous forces acting on each SPH particle were computed explicitly. Non-Newtonian fluids such as Herschel–Bulkley fluids, the effective viscosity between yielded and unyielded regions can differ by several orders of magnitudes; imposing severe time step restrictions for the simulation for explicit methods. Numerically, this can be seen as a stiff problem. We propose a semi-implicit time-stepping approach where the viscous forces are computed implicitly, within the context of SPH. We demonstrate the convergence of the method via a simple 2D test case.

1 citations

Journal ArticleDOI
TL;DR: In this paper , a comparative study has been conducted to evaluate the computational efficiency of those four approaches in the prediction of soil large deformations during the dynamic compaction (DC) operations, and a hybrid model of Lagrangian and SPH formulations was constituted to satisfy the maximum accuracy with the minimum running time.
Abstract: Abstract Dynamic compaction (DC) is vastly utilized to improve the strength characteristics of the soils. To predict the soil deformations derived from the DC operations, usually numerical simulation analysis is applied. For the conduction of such simulations, several numerical approaches with different elemental formulations can be used. From the perspective of finite element analysis (FEA), there are four main formulations including the Lagrangian, Arbitrary Lagrangian-Eulerian (ALE), Coupled Lagrangian-Eulerian (CEL), and Smoothed Particle Hydrodynamic (SPH). In this research, a comparative study has been conducted to evaluate the computational efficiency of those four approaches in the prediction of soil large deformations during the DC operations. To do this, for a DC operation executed in a road embankment construction project in China, the real field data was compared to the results obtained from the numerical simulations via the ABAQUS program. The findings demonstrate that of all those approaches, the Lagrangian approach delivers the minimum accuracy of the predicted results, albeit with the least running time. In contrast, the ALE formulation predicted closer estimations of soil deformations although it was found to be less time-efficient. Interestingly, the CEL and SPH approaches predicted the soil deformations with the maximum degree of accuracy whereas they were not as time-efficient as the Lagrangian approach. To address this issue, a hybrid model of Lagrangian and SPH formulations was constituted to satisfy the maximum accuracy with the minimum running time. Such a hybrid model is highly applicable for the accurate prediction of soil large deformations during the DC operations.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors present a discussion on the properties of the collocation mesh-free method, the Updated Lagrangian Taylor-SPH (UL-TSPH), for dynamic problems in solid mechanics.
Abstract: This paper presents a discussion on the properties of the collocation meshfree method, the Updated Lagrangian Taylor-SPH (UL-TSPH), for dynamic problems in solid mechanics. The PDEs are written in mixed form in terms of stress and velocity for the elastodynamics problems. Two sets of particles are used to discretize the partial differential equations, resulting on avoiding the tensile instability inherent to classical SPH formulations. Numerical examples ranging from propagation of a shock wave in an elastic bar to a stationary Mode-I semi-Infinite cracked plate subjected to uniaxial tension are used to assess the performance of the proposed method.

1 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
89% related
Numerical analysis
52.2K papers, 1.2M citations
86% related
Discretization
53K papers, 1M citations
86% related
Boundary value problem
145.3K papers, 2.7M citations
82% related
Partial differential equation
70.8K papers, 1.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202355
2022112
2021102
202092
201996
201897