scispace - formally typeset
Search or ask a question
Topic

Mesoangioblast

About: Mesoangioblast is a research topic. Over the lifetime, 72 publications have been published within this topic receiving 6529 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Data show that myogenic precursors, distinct from satellite cells, are associated with microvascular walls in the human skeletal muscle, may represent a correlate of embryonic 'mesoangioblasts' present after birth and may be a promising candidate for future cell-therapy protocols in patients.
Abstract: Cells derived from blood vessels of human skeletal muscle can regenerate skeletal muscle, similarly to embryonic mesoangioblasts. However, adult cells do not express endothelial markers, but instead express markers of pericytes, such as NG2 proteoglycan and alkaline phosphatase (ALP), and can be prospectively isolated from freshly dissociated ALP(+) cells. Unlike canonical myogenic precursors (satellite cells), pericyte-derived cells express myogenic markers only in differentiated myotubes, which they form spontaneously with high efficiency. When transplanted into severe combined immune deficient-X-linked, mouse muscular dystrophy (scid-mdx) mice, pericyte-derived cells colonize host muscle and generate numerous fibres expressing human dystrophin. Similar cells isolated from Duchenne patients, and engineered to express human mini-dystrophin, also give rise to many dystrophin-positive fibres in vivo. These data show that myogenic precursors, distinct from satellite cells, are associated with microvascular walls in the human skeletal muscle, may represent a correlate of embryonic 'mesoangioblasts' present after birth and may be a promising candidate for future cell-therapy protocols in patients.

961 citations

Journal ArticleDOI
30 Nov 2006-Nature
TL;DR: It is reported that intra-arterial delivery of wild-type canine mesoangioblasts (vessel-associated stem cells) results in an extensive recovery of dystrophin expression, normal muscle morphology and function, and a remarkable clinical amelioration and preservation of active motility.
Abstract: Duchenne muscular dystrophy remains an untreatable genetic disease that severely limits motility and life expectancy in affected children. The only animal model specifically reproducing the alterations in the dystrophin gene and the full spectrum of human pathology is the golden retriever dog model. Affected animals present a single mutation in intron 6, resulting in complete absence of the dystrophin protein, and early and severe muscle degeneration with nearly complete loss of motility and walking ability. Death usually occurs at about 1 year of age as a result of failure of respiratory muscles. Here we report that intra-arterial delivery of wild-type canine mesoangioblasts (vessel-associated stem cells) results in an extensive recovery of dystrophin expression, normal muscle morphology and function (confirmed by measurement of contraction force on single fibres). The outcome is a remarkable clinical amelioration and preservation of active motility. These data qualify mesoangioblasts as candidates for future stem cell therapy for Duchenne patients.

761 citations

Journal ArticleDOI
25 Jul 2003-Science
TL;DR: In this paper, the authors used wild-type mesoangioblasts, a class of vessel-associated stem cells, to correct morphologically and functionally the dystrophic phenotype of virtually all downstream muscles in adult immunocompetent α-sarcoglycan null mice.
Abstract: Preclinical or clinical trials for muscular dystrophies have met with modest success, mainly because of inefficient delivery of viral vectors or donor cells to dystrophic muscles. We report here that intra-arterial delivery of wild-type mesoangioblasts, a class of vessel-associated stem cells, corrects morphologically and functionally the dystrophic phenotype of virtually all downstream muscles in adult immunocompetent α-sarcoglycan (α-SG) null mice, a model organism for limb-girdle muscular dystrophy. When mesoangioblasts isolated from juvenile dystrophic mice and transduced with a lentiviral vector expressing α-SG were injected into the femoral artery of dystrophic mice, they reconstituted skeletal muscle in a manner similar to that seen in wild-type cells. The success of this protocol was mainly due to widespread distribution of donor stem cells through the capillary network, a distinct advantage of this strategy over previous approaches.

646 citations

Journal ArticleDOI
TL;DR: It is concluded that these newly identified vessel-associated stem cells, the meso-angioblasts, participate in postembryonic development of the mesoderm, and it is speculated that postnatal mesodermal stem cells may be derived from a vascular developmental origin.
Abstract: We have previously reported the origin of a class of skeletal myogenic cells from explants of dorsal aorta. This finding disagrees with the known origin of all skeletal muscle from somites and has therefore led us to investigate the in vivo origin of these cells and, moreover, whether their fate is restricted to skeletal muscle, as observed in vitro under the experimental conditions used. To address these issues, we grafted quail or mouse embryonic aorta into host chick embryos. Donor cells, initially incorporated into the host vessels, were later integrated into mesodermal tissues, including blood, cartilage, bone, smooth, skeletal and cardiac muscle. When expanded on a feeder layer of embryonic fibroblasts, the clonal progeny of a single cell from the mouse dorsal aorta acquired unlimited lifespan, expressed hemo-angioblastic markers (CD34, Flk1 and Kit) at both early and late passages, and maintained multipotency in culture or when transplanted into a chick embryo. We conclude that these newly identified vessel-associated stem cells, the meso-angioblasts, participate in postembryonic development of the mesoderm, and we speculate that postnatal mesodermal stem cells may be derived from a vascular developmental origin.

520 citations

Journal ArticleDOI
TL;DR: It is shown that extracellular HMGB1 and its receptor for advanced glycation end products (RAGE) induce both migration and proliferation of vessel-associated stem cells (mesoangioblasts), and thus may play a role in muscle tissue regeneration.
Abstract: High mobility group box 1 (HMGB1) is an abundant chromatin protein that acts as a cytokine when released in the extracellular milieu by necrotic and inflammatory cells. Here, we show that extracellular HMGB1 and its receptor for advanced glycation end products (RAGE) induce both migration and proliferation of vessel-associated stem cells (mesoangioblasts), and thus may play a role in muscle tissue regeneration. In vitro, HMGB1 induces migration and proliferation of both adult and embryonic mesoangioblasts, and disrupts the barrier function of endothelial monolayers. In living mice, mesoangioblasts injected into the femoral artery migrate close to HMGB1-loaded heparin-Sepharose beads implanted in healthy muscle, but are unresponsive to control beads. Interestingly, α-sarcoglycan null dystrophic muscle contains elevated levels of HMGB1; however, mesoangioblasts migrate into dystrophic muscle even if their RAGE receptor is disabled. This implies that the HMGB1–RAGE interaction is sufficient, but not necessary, for mesoangioblast homing; a different pathway might coexist. Although the role of endogenous HMGB1 in the reconstruction of dystrophic muscle remains to be clarified, injected HMGB1 may be used to promote tissue regeneration.

468 citations


Network Information
Related Topics (5)
Cellular differentiation
90.9K papers, 6M citations
75% related
Stem cell
129.1K papers, 5.9M citations
74% related
Signal transduction
122.6K papers, 8.2M citations
71% related
Transcription factor
82.8K papers, 5.4M citations
70% related
Regulation of gene expression
85.4K papers, 5.8M citations
70% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20212
20193
20183
20172
20162
20156