scispace - formally typeset


Mesoporous material

About: Mesoporous material is a(n) research topic. Over the lifetime, 43787 publication(s) have been published within this topic receiving 1374322 citation(s).

More filters
Journal ArticleDOI
22 Oct 1992-Nature
Abstract: MICROPOROUS and mesoporous inorganic solids (with pore diameters of ≤20 A and ∼20–500 A respectively)1 have found great utility as catalysts and sorption media because of their large internal surface area. Typical microporous materials are the crystalline framework solids, such as zeolites2, but the largest pore dimensions found so far are ∼10–12 A for some metallophosphates3–5 and ∼14 A for the mineral cacoxenite6. Examples of mesoporous solids include silicas7 and modified layered materials8–11, but these are invariably amorphous or paracrystalline, with pores that are irregularly spaced and broadly distributed in size8,12. Pore size can be controlled by intercalation of layered silicates with a surfactant species9,13, but the final product retains, in part, the layered nature of the precursor material. Here we report the synthesis of mesoporous solids from the calcination of aluminosilicate gels in the presence of surfactants. The material14,15 possesses regular arrays of uniform channels, the dimensions of which can be tailored (in the range 16 A to 100 A or more) through the choice of surfactant, auxiliary chemicals and reaction conditions. We propose that the formation of these materials takes place by means of a liquid-crystal 'templating' mechanism, in which the silicate material forms inorganic walls between ordered surfactant micelles.

14,634 citations

Journal ArticleDOI
Abstract: The synthesis, characterization, and proposed mechanism of formation of a new family of silicatelaluminosilicate mesoporous molecular sieves designated as M41S is described. MCM-41, one member of this family, exhibits a hexagonal arrangement of uniform mesopores whose dimensions may be engineered in the range of - 15 A to greater than 100 A. Other members of this family, including a material exhibiting cubic symmetry, have ken synthesized. The larger pore M41S materials typically have surface areas above 700 m2/g and hydrocarbon sorption capacities of 0.7 cc/g and greater. A templating mechanism (liquid crystal templating-LCT) in which surfactant liquid crystal structures serve as organic templates is proposed for the formation of these materials. In support of this templating mechanism, it was demonstrated that the structure and pore dimensions of MCM-41 materials are intimately linked to the properties of the surfactant, including surfactant chain length and solution chemistry. The presence of variable pore size MCM-41, cubic material, and other phases indicates that M41S is an extensive family of materials.

10,033 citations

Journal ArticleDOI
Abstract: A family of highly ordered mesoporous (20−300 A) silica structures have been synthesized by the use of commercially available nonionic alkyl poly(ethylene oxide) (PEO) oligomeric surfactants and poly(alkylene oxide) block copolymers in acid media. Periodic arrangements of mescoscopically ordered pores with cubic Im3m, cubic Pm3m (or others), 3-d hexagonal (P63/mmc), 2-d hexagonal (p6mm), and lamellar (Lα) symmetries have been prepared. Under acidic conditions at room temperature, the nonionic oligomeric surfactants frequently form cubic or 3-d hexagonal mesoporous silica structures, while the nonionic triblock copolymers tend to form hexagonal (p6mm) mesoporous silica structures. A cubic mesoporous silica structure (SBA-11) with Pm3m diffraction symmetry has been synthesized in the presence of C16H33(OCH2CH2)10OH (C16EO10) surfactant species, while a 3-d hexagonal (P63/mmc) mesoporous silica structure (SBA-12) results when C18EO10 is used. Surfactants with short EO segments tend to form lamellar mesost...

6,021 citations

Journal ArticleDOI
27 Mar 1997-Nature
Abstract: Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores1, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested2 that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes3. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectrosocopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles.

3,446 citations

Journal ArticleDOI
Abstract: A critical review of adsorption methods that are currently used in the characterization of ordered organic−inorganic nanocomposite materials is presented, and the adsorption methodology that is potentially useful for this characterization, but has not yet been applied, is discussed. The ordered organic−inorganic nanocomposites include surface-functionalized ordered mesoporous materials (OMMs) with siliceous frameworks (synthesized either via postsynthesis surface modification or via direct co-condensation method), periodic mesoporous organosilicas, and surfactant-containing OMMs. This review covers the methods for determination of the specific surface area and pore volume. The available methods for mesopore size analysis are critically compared and evaluated, with special emphasis on the recent developments related to the application of advanced computational methods for studying adsorption in porous media and to the direct modeling of adsorption using highly ordered surface-functionalized OMMs as model a...

2,668 citations

Network Information
Related Topics (5)

85.9K papers, 2.6M citations

92% related

400.9K papers, 8.7M citations

92% related

226.4K papers, 5.9M citations

92% related

213.4K papers, 3.6M citations

91% related
Carbon nanotube

109K papers, 3.6M citations

90% related
No. of papers in the topic in previous years