scispace - formally typeset
Search or ask a question
Topic

Mesoporous material

About: Mesoporous material is a research topic. Over the lifetime, 43787 publications have been published within this topic receiving 1374322 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the preparation, properties, and potential applications of mesoporous organic-inorganic hybrid materials in the areas of catalysis, sorption, chromatography, and the construction of systems for controlled release of active compounds, as well as molecular switches, are given.
Abstract: Mesoporous organic-inorganic hybrid materials, a new class of materials characterized by large specific surface areas and pore sizes between 2 and 15 nm, have been obtained through the coupling of inorganic and organic components by template synthesis. The incorporation of functionalities can be achieved in three ways: by subsequent attachment of organic components onto a pure silica matrix (grafting), by simultaneous reaction of condensable inorganic silica species and silylated organic compounds (co-condensation, one-pot synthesis), and by the use of bissilylated organic precursors that lead to periodic mesoporous organosilicas (PMOs). This Review gives an overview of the preparation, properties, and potential applications of these materials in the areas of catalysis, sorption, chromatography, and the construction of systems for controlled release of active compounds, as well as molecular switches, with the main focus being on PMOs.

2,765 citations

Journal ArticleDOI
TL;DR: In this paper, high resolution transmission electron microscopy proves the extended two-dimensional character of the condensation motif of graphitic carbon nitride, and a new family of metal nitride nanostructures can also be accessed from the corresponding oxides.
Abstract: Graphitic carbon nitride, g-C3N4, can be made by polymerization of cyanamide, dicyandiamide or melamine. Depending on reaction conditions, different materials with different degrees of condensation, properties and reactivities are obtained. The firstly formed polymeric C3N4 structure, melon, with pendant amino groups, is a highly ordered polymer. Further reaction leads to more condensed and less defective C3N4 species, based on tri-s-triazine (C6N7) units as elementary building blocks. High resolution transmission electron microscopy proves the extended two-dimensional character of the condensation motif. Due to the polymerization-type synthesis from a liquid precursor, a variety of material nanostructures such as nanoparticles or mesoporous powders can be accessed. Those nanostructures also allow fine tuning of properties, the ability for intercalation, as well as the possibility to give surface-rich materials for heterogeneous reactions. Due to the special semiconductor properties of carbon nitrides, they show unexpected catalytic activity for a variety of reactions, such as for the activation of benzene, trimerization reactions, and also the activation of carbon dioxide. Model calculations are presented to explain this unusual case of heterogeneous, metal-free catalysis. Carbon nitride can also act as a heterogeneous reactant, and a new family of metal nitride nanostructures can be accessed from the corresponding oxides.

2,746 citations

Journal ArticleDOI
TL;DR: It is shown that the capacitive charge-storage properties of mesoporous films of iso-oriented alpha-MoO(3) are superior to those of either Mesoporous amorphous material or non-porous crystalline MoO( 3).
Abstract: Capacitive energy storage is technologically attractive because of its short charging times and its ability to deliver more power than batteries. The capacitive charge-storage properties of mesoporous films of MoO3 with iso-oriented grains now lead to pseudocapacitive materials that offer increased energy density while still maintaining high power density.

2,643 citations

Journal ArticleDOI
TL;DR: A simple one-step NaCl-assisted microwave-solvothermal method has been developed for the preparation of monodisperse α-Fe2O3 mesoporous microspheres, and high photocatalytic activities in the degradation of salicylic acid are observed.
Abstract: A simple one-step NaCl-assisted microwave-solvothermal method has been developed for the preparation of monodisperse α-Fe2O3 mesoporous microspheres. In this approach, Fe(NO3)3 · 9H2O is used as the iron source, and polyvinylpyrrolidone (PVP) acts as a surfactant in the presence of NaCl in mixed solvents of H2O and ethanol. Under the present experimental conditions, monodisperse α-Fe2O3 mesoporous microspheres can form via oriented attachment of α-Fe2O3 nanocrystals. One of the advantages of this method is that the size of α-Fe2O3 mesoporous microspheres can be adjusted in the range from ca. 170 to ca. 260 nm by changing the experimental parameters. High photocatalytic activities in the degradation of salicylic acid are observed for α-Fe2O3 mesoporous microspheres with different specific surface areas.

2,381 citations

Journal ArticleDOI
12 Jul 2001-Nature
TL;DR: A general strategy for the synthesis of highly ordered, rigid arrays of nanoporous carbon having uniform but tunable diameters is described, which gives rise to promising electrocatalytic activity for oxygen reduction and could prove to be practically relevant for fuel-cell technologies.
Abstract: Nanostructured carbon materials are potentially of great technological interest for the development of electronic1,2, catalytic3,4 and hydrogen-storage systems5,6. Here we describe a general strategy for the synthesis of highly ordered, rigid arrays of nanoporous carbon having uniform but tunable diameters (typically 6 nanometres inside and 9 nanometres outside). These structures are formed by using ordered mesoporous silicas as templates, the removal of which leaves a partially ordered graphitic framework. The resulting material supports a high dispersion of platinum nanoparticles, exceeding that of other common microporous carbon materials (such as carbon black, charcoal and activated carbon fibres). The platinum cluster diameter can be controlled to below 3 nanometres, and the high dispersion of these metal clusters gives rise to promising electrocatalytic activity for oxygen reduction, which could prove to be practically relevant for fuel-cell technologies. These nanomaterials can also be prepared in the form of free-standing films by using ordered silica films as the templates.

2,352 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
92% related
Catalysis
400.9K papers, 8.7M citations
92% related
Adsorption
226.4K papers, 5.9M citations
92% related
Oxide
213.4K papers, 3.6M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20232,224
20224,741
20212,062
20202,431
20192,902