Topic

# Mesoscopic physics

About: Mesoscopic physics is a research topic. Over the lifetime, 10288 publications have been published within this topic receiving 252489 citations.

##### Papers published on a yearly basis

##### Papers

More filters

•

01 Jan 1995TL;DR: In this article, preliminary concepts of conductance from transmission, S-matrix and Green's function formalism are discussed. And double-barrier tunnelling is considered.

Abstract: 1. Preliminary concepts 2. Conductance from transmission 3. Transmission function, S-matrix and Green's functions 4. Quantum Hall effect 5. Localisation and fluctuations 6. Double-barrier tunnelling 7. Optical analogies 8. Non-equilibrium Green's function formalism.

5,447 citations

01 May 1997

TL;DR: In this article, preliminary concepts of conductance from transmission, S-matrix and Green's function formalism are discussed. And double-barrier tunnelling is considered.

Abstract: 1. Preliminary concepts 2. Conductance from transmission 3. Transmission function, S-matrix and Green's functions 4. Quantum Hall effect 5. Localisation and fluctuations 6. Double-barrier tunnelling 7. Optical analogies 8. Non-equilibrium Green's function formalism.

4,224 citations

••

TL;DR: In this article, a review of dissipative particle dynamics (DPD) as a mesoscopic simulation method is presented, and a link between these parameters and χ-parameters in Flory-Huggins-type models is made.

Abstract: We critically review dissipative particle dynamics (DPD) as a mesoscopic simulation method. We have established useful parameter ranges for simulations, and have made a link between these parameters and χ-parameters in Flory-Huggins-type models. This is possible because the equation of state of the DPD fluid is essentially quadratic in density. This link opens the way to do large scale simulations, effectively describing millions of atoms, by firstly performing simulations of molecular fragments retaining all atomistic details to derive χ-parameters, then secondly using these results as input to a DPD simulation to study the formation of micelles, networks, mesophases and so forth. As an example application, we have calculated the interfacial tension σ between homopolymer melts as a function of χ and N and have found a universal scaling collapse when σ/ρkBTχ0.4 is plotted against χN for N>1. We also discuss the use of DPD to simulate the dynamics of mesoscopic systems, and indicate a possible problem with...

3,837 citations

••

TL;DR: In this article, it was shown that the magnetization of the Mn12 cluster is highly anisotropic and the magnetisation relaxation time becomes very long below a temperature of 4 K, giving rise to pronounced hysteresis.

Abstract: MAGNETIC materials of mesoscopic dimensions (a few to many thousands of atoms) may exhibit novel and useful properties such as giant magnetostriction, magnetoresistivity and magnetocaloric effects1–4. Such materials also allow one to study the transition from molecular to bulk-like magnetic behaviour. One approach for preparing mesoscopic magnetic materials is to fragment bulk ferromagnets; a more controllable method is to take a 'bottom-up' approach, using chemistry to grow well defined clusters of metal ions5,6. Lis7 has described a twelve-ion manganese cluster in which eight of the Mn ions are in the +3 oxidation state (spin S=2) and four are in the +4 state (S=3/2). These ions are magnetically coupled to give an S=10 ground state8, giving rise to unusual magnetic relaxation properties8,9. Here we report that the magnetization of the Mn12 cluster is highly anisotropic and that the magnetization relaxation time becomes very long below a temperature of 4 K, giving rise to pronounced hysteresis. This behaviour is not, however, strictly analogous to that of a bulk ferromagnet, in which magnetization hysteresis results from the motion of domain walls. In principle, a bistable magnetic unit of this sort could act as a data storage device.

3,327 citations