scispace - formally typeset


About: Meta-analysis is a(n) research topic. Over the lifetime, 20143 publication(s) have been published within this topic receiving 1279030 citation(s). The topic is also known as: metaanalysis. more


Open accessJournal Article
David Moher1, David Moher2, Alessandro Liberati3, Jennifer Tetzlaff2  +1 moreInstitutions (4)
21 Jul 2009-Open Medicine
Abstract: Systematic reviews and meta-analyses have become increasingly important in health care. Clinicians read them to keep up to date with their field,1,2 and they are often used as a starting point for developing clinical practice guidelines. Granting agencies may require a systematic review to ensure there is justification for further research,3 and some health care journals are moving in this direction.4 As with all research, the value of a systematic review depends on what was done, what was found, and the clarity of reporting. As with other publications, the reporting quality of systematic reviews varies, limiting readers' ability to assess the strengths and weaknesses of those reviews. Several early studies evaluated the quality of review reports. In 1987, Mulrow examined 50 review articles published in 4 leading medical journals in 1985 and 1986 and found that none met all 8 explicit scientific criteria, such as a quality assessment of included studies.5 In 1987, Sacks and colleagues6 evaluated the adequacy of reporting of 83 meta-analyses on 23 characteristics in 6 domains. Reporting was generally poor; between 1 and 14 characteristics were adequately reported (mean = 7.7; standard deviation = 2.7). A 1996 update of this study found little improvement.7 In 1996, to address the suboptimal reporting of meta-analyses, an international group developed a guidance called the QUOROM Statement (QUality Of Reporting Of Meta-analyses), which focused on the reporting of meta-analyses of randomized controlled trials.8 In this article, we summarize a revision of these guidelines, renamed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses), which have been updated to address several conceptual and practical advances in the science of systematic reviews (Box 1). Box 1 Conceptual issues in the evolution from QUOROM to PRISMA more

Topics: Systematic review (63%), Centre for Reviews and Dissemination (52%), Meta-analysis (51%) more

42,533 Citations

Open accessJournal ArticleDOI: 10.1136/BMJ.327.7414.557
04 Sep 2003-BMJ
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic … more

Topics: Study heterogeneity (62%), Systematic review (54%), Meta-analysis (53%) more

37,135 Citations

Open accessJournal ArticleDOI: 10.1136/BMJ.315.7109.629
13 Sep 1997-BMJ
Abstract: Objective: Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Design: Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews . Main outcome measure: Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. Results: In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. Conclusions: A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution. Key messages Systematic reviews of randomised trials are the best strategy for appraising evidence; however, the findings of some meta-analyses were later contradicted by large trials Funnel plots, plots of the trials9 effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from the Cochrane Database of Systematic Reviews Critical examination of systematic reviews for publication and related biases should be considered a routine procedure more

Topics: Funnel plot (73%), Publication bias (58%), Meta-analysis (55%)

31,295 Citations

Journal ArticleDOI: 10.1016/0197-2456(86)90046-2
Abstract: This paper examines eight published reviews each reporting results from several related trials. Each review pools the results from the relevant trials in order to evaluate the efficacy of a certain treatment for a specified medical condition. These reviews lack consistent assessment of homogeneity of treatment effect before pooling. We discuss a random effects approach to combining evidence from a series of experiments comparing two treatments. This approach incorporates the heterogeneity of effects in the analysis of the overall treatment efficacy. The model can be extended to include relevant covariates which would reduce the heterogeneity and allow for more specific therapeutic recommendations. We suggest a simple noniterative procedure for characterizing the distribution of treatment effects in a series of studies. more

Topics: Study heterogeneity (56%), Meta-analysis (50%), Funnel plot (50%)

29,821 Citations

Open accessJournal ArticleDOI: 10.1371/JOURNAL.PMED.1000100
18 Aug 2009-PLOS Medicine
Abstract: Systematic reviews and meta-analyses are essential to summarize evidence relating to efficacy and safety of health care interventions accurately and reliably. The clarity and transparency of these reports, however, is not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (QUality Of Reporting Of Meta-analysis) Statement—a reporting guideline published in 1999—there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realizing these issues, an international group that included experienced authors and methodologists developed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA Statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this Explanation and Elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA Statement, this document, and the associated Web site ( should be helpful resources to improve reporting of systematic reviews and meta-analyses. more

Topics: Systematic review (62%), Meta-analysis (51%)

22,678 Citations

No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

Pim Cuijpers

117 papers, 17.8K citations

Patompong Ungprasert

79 papers, 1K citations

Christian Gluud

58 papers, 4.6K citations

Gordon H. Guyatt

37 papers, 3.1K citations

Victor M. Montori

34 papers, 6K citations

Network Information
Related Topics (5)
Randomized controlled trial

119.8K papers, 4.8M citations

95% related

58.4K papers, 2M citations

94% related
Risk factor

91.9K papers, 5.7M citations

94% related
Odds ratio

68.7K papers, 3M citations

94% related
Cohort study

58.9K papers, 2.8M citations

93% related