scispace - formally typeset
Search or ask a question
Topic

Meta learning (computer science)

About: Meta learning (computer science) is a research topic. Over the lifetime, 1791 publications have been published within this topic receiving 34026 citations. The topic is also known as: meta learning.


Papers
More filters
Proceedings Article
06 Aug 2017
TL;DR: An algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning is proposed.
Abstract: We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.

7,027 citations

Posted Content
TL;DR: A family of algorithms for learning a parameter initialization that can be fine-tuned quickly on a new task, using only first-order derivatives for the meta-learning updates, including Reptile, which works by repeatedly sampling a task, training on it, and moving the initialization towards the trained weights on that task.
Abstract: This paper considers meta-learning problems, where there is a distribution of tasks, and we would like to obtain an agent that performs well (i.e., learns quickly) when presented with a previously unseen task sampled from this distribution. We analyze a family of algorithms for learning a parameter initialization that can be fine-tuned quickly on a new task, using only first-order derivatives for the meta-learning updates. This family includes and generalizes first-order MAML, an approximation to MAML obtained by ignoring second-order derivatives. It also includes Reptile, a new algorithm that we introduce here, which works by repeatedly sampling a task, training on it, and moving the initialization towards the trained weights on that task. We expand on the results from Finn et al. showing that first-order meta-learning algorithms perform well on some well-established benchmarks for few-shot classification, and we provide theoretical analysis aimed at understanding why these algorithms work.

1,344 citations

Journal ArticleDOI
TL;DR: A thorough survey to fully understand Few-shot Learning (FSL), and categorizes FSL methods from three perspectives: data, which uses prior knowledge to augment the supervised experience; model, which used to reduce the size of the hypothesis space; and algorithm, which using prior knowledgeto alter the search for the best hypothesis in the given hypothesis space.
Abstract: Machine learning has been highly successful in data-intensive applications but is often hampered when the data set is small. Recently, Few-shot Learning (FSL) is proposed to tackle this problem. Using prior knowledge, FSL can rapidly generalize to new tasks containing only a few samples with supervised information. In this article, we conduct a thorough survey to fully understand FSL. Starting from a formal definition of FSL, we distinguish FSL from several relevant machine learning problems. We then point out that the core issue in FSL is that the empirical risk minimizer is unreliable. Based on how prior knowledge can be used to handle this core issue, we categorize FSL methods from three perspectives: (i) data, which uses prior knowledge to augment the supervised experience; (ii) model, which uses prior knowledge to reduce the size of the hypothesis space; and (iii) algorithm, which uses prior knowledge to alter the search for the best hypothesis in the given hypothesis space. With this taxonomy, we review and discuss the pros and cons of each category. Promising directions, in the aspects of the FSL problem setups, techniques, applications, and theories, are also proposed to provide insights for future research.1

1,129 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: The objective is to learn feature embeddings that generalize well under a linear classification rule for novel categories and this work exploits two properties of linear classifiers: implicit differentiation of the optimality conditions of the convex problem and the dual formulation of the optimization problem.
Abstract: Many meta-learning approaches for few-shot learning rely on simple base learners such as nearest-neighbor classifiers. However, even in the few-shot regime, discriminatively trained linear predictors can offer better generalization. We propose to use these predictors as base learners to learn representations for few-shot learning and show they offer better tradeoffs between feature size and performance across a range of few-shot recognition benchmarks. Our objective is to learn feature embeddings that generalize well under a linear classification rule for novel categories. To efficiently solve the objective, we exploit two properties of linear classifiers: implicit differentiation of the optimality conditions of the convex problem and the dual formulation of the optimization problem. This allows us to use high-dimensional embeddings with improved generalization at a modest increase in computational overhead. Our approach, named MetaOptNet, achieves state-of-the-art performance on miniImageNet, tieredImageNet, CIFAR-FS, and FC100 few-shot learning benchmarks.

1,084 citations

Journal ArticleDOI
Ricardo Vilalta1, Youssef Drissi1
TL;DR: This paper provides its own perspective view in which the goal is to build self-adaptive learners that improve their bias dynamically through experience by accumulating meta-knowledge, and provides a survey of meta-learning as reported by the machine-learning literature.
Abstract: Different researchers hold different views of what the term meta-learning exactly means. The first part of this paper provides our own perspective view in which the goal is to build self-adaptive learners (i.e. learning algorithms that improve their bias dynamically through experience by accumulating meta-knowledge). The second part provides a survey of meta-learning as reported by the machine-learning literature. We find that, despite different views and research lines, a question remains constant: how can we exploit knowledge about learning (i.e. meta-knowledge) to improve the performance of learning algorithms? Clearly the answer to this question is key to the advancement of the field and continues being the subject of intensive research.

1,052 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023165
2022339
2021545
2020425
2019239
2018139