Topic
Metaheuristic
About: Metaheuristic is a(n) research topic. Over the lifetime, 29916 publication(s) have been published within this topic receiving 921064 citation(s).
Papers published on a yearly basis
Papers
More filters
06 Aug 2002
TL;DR: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced, and the evolution of several paradigms is outlined, and an implementation of one of the paradigm is discussed.
Abstract: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described.
32,237 citations
Abstract: A new heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space functions is presented. By means of an extensive testbed it is demonstrated that the new method converges faster and with more certainty than many other acclaimed global optimization methods. The new method requires few control variables, is robust, easy to use, and lends itself very well to parallel computation.
20,354 citations
TL;DR: A snapshot of particle swarming from the authors’ perspective, including variations in the algorithm, current and ongoing research, applications and open problems, is included.
Abstract: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed The relationships between particle swarm optimization and both artificial life and genetic algorithms are described
17,792 citations
04 Oct 1995
TL;DR: The optimization of nonlinear functions using particle swarm methodology is described and implementations of two paradigms are discussed and compared, including a recently developed locally oriented paradigm.
Abstract: The optimization of nonlinear functions using particle swarm methodology is described. Implementations of two paradigms are discussed and compared, including a recently developed locally oriented paradigm. Benchmark testing of both paradigms is described, and applications, including neural network training and robot task learning, are proposed. Relationships between particle swarm optimization and both artificial life and evolutionary computation are reviewed.
13,173 citations
Book•
01 Jan 2001
TL;DR: This text provides an excellent introduction to the use of evolutionary algorithms in multi-objective optimization, allowing use as a graduate course text or for self-study.
Abstract: From the Publisher:
Evolutionary algorithms are relatively new, but very powerful techniques used to find solutions to many real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run. · Comprehensive coverage of this growing area of research · Carefully introduces each algorithm with examples and in-depth discussion · Includes many applications to real-world problems, including engineering design and scheduling · Includes discussion of advanced topics and future research · Features exercises and solutions, enabling use as a course text or for self-study · Accessible to those with limited knowledge of classical multi-objective optimization and evolutionary algorithms The integrated presentation of theory, algorithms and examples will benefit those working and researching in the areas of optimization, optimal design and evolutionary computing. This text provides an excellent introduction to the use of evolutionary algorithms in multi-objective optimization, allowing use as a graduate course text or for self-study.
11,886 citations