scispace - formally typeset
Search or ask a question
Topic

Metamaterial cloaking

About: Metamaterial cloaking is a research topic. Over the lifetime, 658 publications have been published within this topic receiving 70196 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors' simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver, which resolves objects only a few nanometers across.
Abstract: Optical lenses have for centuries been one of scientists’ prime tools. Their operation is well understood on the basis of classical optics: curved surfaces focus light by virtue of the refractive index contrast. Equally their limitations are dictated by wave optics: no lens can focus light onto an area smaller than a square wavelength. What is there new to say other than to polish the lens more perfectly and to invent slightly better dielectrics? In this Letter I want to challenge the traditional limitation on lens performance and propose a class of “superlenses,” and to suggest a practical scheme for implementing such a lens. Let us look more closely at the reasons for limitation in performance. Consider an infinitesimal dipole of frequency v in front of a lens. The electric component of the field will be given by some 2D Fourier expansion,

10,974 citations

Journal ArticleDOI
06 Apr 2001-Science
TL;DR: These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root ofɛ·μ for the frequencies where both the permittivity and the permeability are negative.
Abstract: We present experimental scattering data at microwave frequencies on a structured metamaterial that exhibits a frequency band where the effective index of refraction (n) is negative. The material consists of a two-dimensional array of repeated unit cells of copper strips and split ring resonators on interlocking strips of standard circuit board material. By measuring the scattering angle of the transmitted beam through a prism fabricated from this material, we determine the effective n, appropriate to Snell's law. These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root of epsilon.mu for the frequencies where both the permittivity (epsilon) and the permeability (mu) are negative. Configurations of geometrical optical designs are now possible that could not be realized by positive index materials.

8,477 citations

Journal ArticleDOI
23 Jun 2006-Science
TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Abstract: Using the freedom of design that metamaterials provide, we show how electromagnetic fields can be redirected at will and propose a design strategy. The conserved fields-electric displacement field D, magnetic induction field B, and Poynting vector B-are all displaced in a consistent manner. A simple illustration is given of the cloaking of a proscribed volume of space to exclude completely all electromagnetic fields. Our work has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.

7,811 citations

Journal ArticleDOI
10 Nov 2006-Science
TL;DR: This work describes here the first practical realization of a cloak of invisibility, constructed with the use of artificially structured metamaterials, designed for operation over a band of microwave frequencies.
Abstract: A recently published theory has suggested that a cloak of invisibility is in principle possible, at least over a narrow frequency band. We describe here the first practical realization of such a cloak; in our demonstration, a copper cylinder was "hidden" inside a cloak constructed according to the previous theoretical prescription. The cloak was constructed with the use of artificially structured metamaterials, designed for operation over a band of microwave frequencies. The cloak decreased scattering from the hidden object while at the same time reducing its shadow, so that the cloak and object combined began to resemble empty space.

6,830 citations

Journal ArticleDOI
TL;DR: The theory of interference and interferometers has been studied extensively in the field of geometrical optics, see as discussed by the authors for a survey of the basic properties of the electromagnetic field.
Abstract: Historical introduction 1. Basic properties of the electromagnetic field 2. Electromagnetic potentials and polarization 3. Foundations of geometrical optics 4. Geometrical theory of optical imaging 5. Geometrical theory of aberrations 6. Image-forming instruments 7. Elements of the theory of interference and interferometers 8. Elements of the theory of diffraction 9. The diffraction theory of aberrations 10. Interference and diffraction with partially coherent light 11. Rigorous diffraction theory 12. Diffraction of light by ultrasonic waves 13. Scattering from inhomogeneous media 14. Optics of metals 15. Optics of crystals 16. Appendices Author index Subject index.

4,439 citations


Network Information
Related Topics (5)
Dielectric
169.7K papers, 2.7M citations
79% related
Electric field
87.1K papers, 1.4M citations
78% related
Antenna (radio)
208K papers, 1.8M citations
76% related
Optical fiber
167K papers, 1.8M citations
75% related
Semiconductor
72.6K papers, 1.2M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233
202210
20182
201722
201633
201548