scispace - formally typeset
Search or ask a question
Topic

Metamorphic facies

About: Metamorphic facies is a research topic. Over the lifetime, 4841 publications have been published within this topic receiving 194855 citations.


Papers
More filters
Book
01 Jan 1974

5,591 citations

Journal ArticleDOI
TL;DR: In this article, the trace element distribution coefficients between zircon and garnet were analyzed for trace elements using LA-ICP-MS and SHRIMP ion microprobe.

2,246 citations

Book
01 Jan 1965
TL;DR: In this paper, the four divisions of metamorphic grade are defined: very low grade, medium grade, high grade and low grade metamorphism, and the change from low grade to medium grade to high grade.
Abstract: 1. Definition and Types of Metamorphism.- 2. From Diagenesis to Metamorphism.- 3. Factors of Metamorphism.- General Considerations.- The Composition of the Fluid Phase.- Directed Pressure.- 4. Mineral Parageneses: The Building Blocks of Metamorphic Rocks.- 5. Graphical Representation of Metamorphic Mineral Parageneses.- Composition Plotting.- ACF Diagram.- A'FK Diagram.- How Are ACF and A'FK Diagrams Used?.- AFM Diagrams.- 6. Classification Principles: Metamorphic Facies versus Metamorphic Grade.- 7. The Four Divisions of Metamorphic Grade.- General Considerations.- The Terms Isograd and Isoreaction-Grad.- The Division of Very-Low-Grade Metamorphism.- The Division of Low-Grade Metamorphism.- The Change from Low-Grade to Medium-Grade Metamorphism.- The Change from Medium-Grade to High-Grade Metamorphism.- Granulite-High Grade Regional Hypersthene Zone.- Pressure Divisions of the Metamorphic Grades.- Problems with the Al2SiO5 Species.- 8. General Characteristics of Metamorphic Terrains.- Metamorphic Zones in Contact Aureoles.- Metamorphic Zones in Regional Metamorphism.- Paired Metamorphic Belts.- 9. Metamorphic Reactions in Carbonate Rocks.- General Considerations.- Metamorphism of Siliceous Dolomitic Limestones.- Formation of Wollastonite.- Metamorphism of Carbonates at Very High Temperature and Very Low Pressure.- 10. Metamorphism of Marls.- 11. Metamorphism of Ultramafic Rocks: Systems MgO-SiO2-CO2-H2O and MgO-CaO-SiO2-H2O.- 12. Metamorphism of Mafic Rocks.- Transformations Except Those of Very-Low-Grade Metamorphism at Low Pressures.- Very-Low-Grade Metamorphism at Low Pressures.- Evaluation of Metamorphic Changes at Very-Low Grade.- The Role of CO2 in Very-Low-Grade Metamorphism.- 13. Very-Low-Grade Metamorphism of Graywackes.- 14. Metamorphism of Pelites.- General Statement.- Metamorphism of Pelitic Rocks at Very-Low and Low-Grade.- Metamorphism of Pelitic Rocks at Medium- and High-Grade.- 15. A Key to Determine Metamorphic Grades and Major Isoreaction-Grads or Isograds in Common Rocks.- Very-Low-Grade Metamorphism.- Low-Grade.- Medium- and High-Grade.- Geothermometers and Geobarometers.- Sequences of Isoreaction-Grads or Isograds.- 16. Regional Hypersthene Zone (Granolite High Grade).- Nomenclature and Mineralogical Features of "Granulites".- Metamorphism of Granolites and Related Granoblastites.- Petrogenetic Considerations.- 17. Eclogites.- 18. Anatexis, Formation of Migmatites, and Origin of Granitic Magmas.- Anatexis: General Considerations.- Experimental Anatexis of Rocks Composed of Alkali Feldspar, Plagioclase, and Quartz.- Experimental Anatexis of Rocks Composed of Plagioclase and Quartz but Lacking Alkali Feldspar.- Formation of Migmatites.- Formation of Granitic Magmas by Anatexis.- Appendix: Nomenclature of Common Metamorphic Rocks.- Names of Important Rock Groups.- Prefixes.- Classification.

1,656 citations

Book
01 Jan 1972
TL;DR: In this paper, the origin of sedimentary rocks is discussed. And the authors propose a method to identify sedimentary sources and sedimentary sedimentary geysers in the Middle East.
Abstract: Origin of sedimentary rocks , Origin of sedimentary rocks , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

1,022 citations

Journal ArticleDOI
TL;DR: In this article, the degree of organisation of carbonaceous material was systematically characterised by Raman microspectroscopy across several Mesozoic and Cenozoic reference metamorphic belts.
Abstract: Metasedimentary rocks generally contain carbonaceous material (CM) deriving from the evolution of organic matter originally present in the host sedimentary rock. During metamorphic processes, this organic matter is progressively transformed into graphite s.s. and the degree of organisation of CM is known as a reliable indicator of metamorphic grade. In this study, the degree of organisation of CM was systematically characterised by Raman microspectroscopy across several Mesozoic and Cenozoic reference metamorphic belts. This degree of organisation, including within-sample heterogeneity, was quantified by the relative area of the defect band (R2 ratio). The results from the Schistes Lustres (Western Alps) and Sanbagawa (Japan) cross-sections show that (1) even through simple visual inspection, changes in the CM Raman spectrum appear sensitive to variations of metamorphic grade, (2) there is an excellent agreement between the R2 values calculated for the two sections when considering samples with an equivalent metamorphic grade, and (3) the evolution of the R2 ratio with metamorphic grade is controlled by temperature (T). Along the Tinos cross-section (Greece), which is characterised by a strong gradient of greenschist facies overprint on eclogite facies rocks, the R2 ratio is nearly constant. Consequently, the degree of organisation of CM is not affected by the retrogression and records peak metamorphic conditions. More generally, analysis of 54 samples representative of high-temperature, low-pressure to high-pressure, low-temperature metamorphic gradients shows that there is a linear correlation between the R2 ratio and the peak temperature [T(°C) = −445 R2 + 641], whatever the metamorphic gradient and, probably, the organic precursor. The Raman spectrum of CM can therefore be used as a geothermometer of the maximum temperature conditions reached during regional metamorphism. Temperature can be estimated to ± 50 °C in the range 330–650 °C. A few technical indications are given for optimal application.

958 citations


Network Information
Related Topics (5)
Metamorphism
18.3K papers, 655.8K citations
95% related
Zircon
23.7K papers, 786.6K citations
93% related
Continental crust
11.1K papers, 677.5K citations
92% related
Basalt
18.6K papers, 805.1K citations
90% related
Subduction
22.4K papers, 1.1M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202361
2022134
2021105
2020113
2019111
201895