scispace - formally typeset
Search or ask a question
Topic

Metamorphism

About: Metamorphism is a research topic. Over the lifetime, 18308 publications have been published within this topic receiving 655859 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The crustal growth and stabilization of the North China Craton (NCC) relate to three major geological events in the Precambrian: (1) a major phase of continental growth at ca. 2.9-2.7 Ga, (2) the amalgamation of micro-blocks and cratonization at 2.5-3.5 Ga, and (3) Paleoproterozoic rifting-subduction-accretion-collision tectonics and subsequent high-grade granulite facies metamorphism-granitoid mag

1,320 citations

Journal ArticleDOI
TL;DR: In this paper, the authors model a sink-shaped continua with a rigid buttress behind and a subducting litho-spheric slab beneath, where the gravity forces generated by the wedge geometry balance the traction exerted on its underside by the sink.
Abstract: Subduction-accretion complexes can be approximated as wedge-shaped continua with a rigid buttress behind and a subducting litho-spheric slab beneath. Thick wedges undergoing prograde metamorphism have a negligible long-term yield strength and are likely to exhibit a complex nonlinear viscous rheology. Such a wedge will tend to deform internally until it reaches a stable configuration, in which the gravitational forces generated by the wedge geometry balance the traction exerted on its underside by the subducting slab. Accretion of material at the wedge front will lengthen the wedge and cause it to shorten internally to regain the stable geometry. This shortening will be expressed as late (out-of-sequence) thrusting, backthrusting, and folding. Conversely, underplating of sediment or crustal slices will thicken the wedge, which may need to extend internally to regain stability. Extension will cause listric normal faults that may merge downward into zones of ductile extension. Continued underplating at depth and compensating extension above provides a mechanism for bringing high-P/low-T metamorphic rocks to upper levels in the rear of the wedge, where they are commonly observed. Many major tectonic boundaries in convergent orogens (such as the Coast Range thrust in the Franciscan Complex, major nappe contacts in the Alps, and the contact between the Nevado-Filabride and Higher Betic nappe complexes in the Betic Cordillera) show abrupt increases in metamorphic grade downward across them. This is consistent with their origin or reactivation as uplift-related, extensional structures.

1,259 citations

Journal ArticleDOI
TL;DR: In this article, the uplift history of eclogite in the Dabie Mountains can be subdivided into two stages: (1) fast uplift driven by thrust during continental-continental collision and deep subduction (at 221 Ma) of the continental crust; (2) later gentle uplift with rise of the Dabbie Mountains in the late Jurassic and Cretaceous (at 134 Ma).

987 citations

Journal ArticleDOI
TL;DR: In this article, the degree of organisation of carbonaceous material was systematically characterised by Raman microspectroscopy across several Mesozoic and Cenozoic reference metamorphic belts.
Abstract: Metasedimentary rocks generally contain carbonaceous material (CM) deriving from the evolution of organic matter originally present in the host sedimentary rock. During metamorphic processes, this organic matter is progressively transformed into graphite s.s. and the degree of organisation of CM is known as a reliable indicator of metamorphic grade. In this study, the degree of organisation of CM was systematically characterised by Raman microspectroscopy across several Mesozoic and Cenozoic reference metamorphic belts. This degree of organisation, including within-sample heterogeneity, was quantified by the relative area of the defect band (R2 ratio). The results from the Schistes Lustres (Western Alps) and Sanbagawa (Japan) cross-sections show that (1) even through simple visual inspection, changes in the CM Raman spectrum appear sensitive to variations of metamorphic grade, (2) there is an excellent agreement between the R2 values calculated for the two sections when considering samples with an equivalent metamorphic grade, and (3) the evolution of the R2 ratio with metamorphic grade is controlled by temperature (T). Along the Tinos cross-section (Greece), which is characterised by a strong gradient of greenschist facies overprint on eclogite facies rocks, the R2 ratio is nearly constant. Consequently, the degree of organisation of CM is not affected by the retrogression and records peak metamorphic conditions. More generally, analysis of 54 samples representative of high-temperature, low-pressure to high-pressure, low-temperature metamorphic gradients shows that there is a linear correlation between the R2 ratio and the peak temperature [T(°C) = −445 R2 + 641], whatever the metamorphic gradient and, probably, the organic precursor. The Raman spectrum of CM can therefore be used as a geothermometer of the maximum temperature conditions reached during regional metamorphism. Temperature can be estimated to ± 50 °C in the range 330–650 °C. A few technical indications are given for optimal application.

958 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a boundary geometry model for the collision of the North China Block and the South China Block (SCB) that predicts the distribution and ages of metamorphism along the suture and the observed local but intense Triassic deformation.
Abstract: Passive continental margins are geometrically irregular as a consequence of either triple-junction evolution or the development of transfer zones in detachment fault systems, whereas active continental margins are smoothly arc-shaped due to subduction of plates on the Earth's spherical surface. We propose that this basic difference in boundary geometry has played an important role in the latest Paleozoic-early Mesozoic collision of North and South China. In particular, we suggest that prior to collision, the active southern margin of the North China Block (NCB) was contiguous across the Qilian Shan, Qinling, Dabie Shan, Shandong peninsula of east central China to the Imjingang area of central Korea. The passive northern margin of the South China Block (SCB), in contrast, had a more irregular shape, such that its northeastern segment in northern Jiangsu and eastern Anhui provinces of China extended some 500 km farther north than its western counterparts in northern Sichuan, southern Shaanxi, and northern Hubei provinces. Collision of the NCB and the SCB began by indentation of the northeastern SCB into the eastern NCB in the late Early Permian and lasted until the Late Triassic-Early Jurassic. The indentation produced the left-slip Tan-Lu fault in northeastern China and the right-slip Honam shear zone in southeastern Korea and caused the northward displacement of the Shandong and the Imjingang metamorphic belts. This model predicts that collision along the Dabie and Qinling metamorphic belt occurred significantly later than along the Shandong belt, which is consistent with radiometric and depositional constraints on the time of collision. The proposed model accounts for the abrupt termination of the Tan-Lu fault at its south end and the drastic decrease in slip along the Tan-Lu fault north of the Shandong metamorphic belt. The model also predicts the distribution and ages of metamorphism along the suture and the observed local but intense Triassic deformation (=Indosinian orogeny) in northeastern China and northern Korea, which was previously an enigmatic feature in this region.

899 citations


Network Information
Related Topics (5)
Zircon
23.7K papers, 786.6K citations
95% related
Continental crust
11.1K papers, 677.5K citations
95% related
Basalt
18.6K papers, 805.1K citations
93% related
Oceanic crust
10.5K papers, 649.3K citations
92% related
Subduction
22.4K papers, 1.1M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023401
2022784
2021471
2020465
2019445
2018395