scispace - formally typeset
Search or ask a question

Showing papers on "Metaphase published in 2001"


Journal ArticleDOI
28 May 2001-Oncogene
TL;DR: A novel hypothesis, termed the ‘ready production label’ model, explains the results in the literature and suggests that phosphorylation of histone H3 is a part of a complex signaling mechanism.
Abstract: Histone H3 is specifically phosphorylated during both mitosis and meiosis in patterns that are specifically coordinated in both space and time Histone H3 phosphorylation may initiate at different phases of the cell division in different organisms, but metaphase chromosomes are always found to be heavily phosphorylated Upon exit of mitosis/meiosis a global dephosphorylation of H3 takes place Potential candidates for H3 kinases are described and their hypothetical mechanism of action on highly condensed chromatin templates is discussed In addition, a novel hypothesis for the role of histone H3 phosphorylation during cell division is proposed This hypothesis, termed the 'ready production label' model, explains the results in the literature and suggests that phosphorylation of histone H3 is a part of a complex signaling mechanism

504 citations


Journal ArticleDOI
TL;DR: The purification of the RLF-B component of the licensing system is reported and it is shown that it corresponds to Cdt1, a protein that is degraded during late mitosis and is essential for repressing origin assembly late in the cell cycle of higher eukaryotes.
Abstract: Eukaryotic replication origins are 'licensed' for replication early in the cell cycle by loading Mcm(2-7) proteins. As chromatin replicates, Mcm(2-7) are removed, thus preventing the origin from firing again. Here we report the purification of the RLF-B component of the licensing system and show that it corresponds to Cdt1. RLF-B/Cdt1 was inhibited by geminin, a protein that is degraded during late mitosis. Immunodepletion of geminin from metaphase extracts allowed them to assemble licensed replication origins. Inhibition of CDKs in metaphase stimulated origin assembly only after the depletion of geminin. These experiments suggest that geminin-mediated inhibition of RLF-B/Cdt1 is essential for repressing origin assembly late in the cell cycle of higher eukaryotes.

476 citations


Journal ArticleDOI
23 Feb 2001-Science
TL;DR: Investigating the behavior of the centrosome in living mitotic cells documented a transient and remarkable postanaphase repositioning of this organelle, which apparently controls the release of central microtubules from the midbody and the completion of cell division.
Abstract: As an organelle coupling nuclear and cytoplasmic divisions, the centrosome is essential to mitotic fidelity, and its inheritance could be critical to understanding cell transformation. Investigating the behavior of the centrosome in living mitotic cells, we documented a transient and remarkable postanaphase repositioning of this organelle, which apparently controls the release of central microtubules from the midbody and the completion of cell division. We also observed that the absence of the centrosome leads to defects in cytokinesis. Together with recent results in yeasts, our data point to a conserved centrosome-dependent pathway that integrates spatial controls into the decision of completing cell division, which requires the repositioning of the centrosome organelle.

415 citations


Journal ArticleDOI
TL;DR: The data reveal that the primary role of the centrosome in somatic cells is not to form the spindle but instead to ensure cytokinesis and subsequent cell cycle progression.
Abstract: When centrosomes are destroyed during prophase by laser microsurgery, vertebrate somatic cells form bipolar acentrosomal mitotic spindles (Khodjakov, A., R.W. Cole, B.R. Oakley, and C.L. Rieder. 2000. Curr. Biol. 10:59-67), but the fate of these cells is unknown. Here, we show that, although these cells lack the radial arrays of astral microtubules normally associated with each spindle pole, they undergo a normal anaphase and usually produce two acentrosomal daughter cells. Relative to controls, however, these cells exhibit a significantly higher (30-50%) failure rate in cytokinesis. This failure correlates with the inability of the spindle to properly reposition itself as the cell changes shape. Also, we destroyed just one centrosome during metaphase and followed the fate of the resultant acentrosomal and centrosomal daughter cells. Within 72 h, 100% of the centrosome-containing cells had either entered DNA synthesis or divided. By contrast, during this period, none of the acentrosomal cells had entered S phase. These data reveal that the primary role of the centrosome in somatic cells is not to form the spindle but instead to ensure cytokinesis and subsequent cell cycle progression.

367 citations


Journal ArticleDOI
TL;DR: It is shown that the arrest induced by nanomolar vinblastine correlates with loss of tension at the kinetochore, and that in response the checkpoint proteins bub1 and bubR1 are recruited to the kinentochore but mad2 is not, which concludes that mammalian bub1/bubR1 and mad2 operate as elements of distinct pathways sensing tension and attachment, respectively.
Abstract: Metaphase checkpoint controls sense abnormalities of chromosome alignment during mitosis and prevent progression to anaphase until proper alignment has been attained. A number of proteins, including mad2, bub1, and bubR1, have been implicated in the metaphase checkpoint control in mammalian cells. Metaphase checkpoints have been shown, in various systems, to read loss of either spindle tension or microtubule attachment at the kinetochore. Characteristically, HeLa cells arrest in metaphase in response to low levels of microtubule inhibitors that leave an intact spindle and a metaphase plate. Here we show that the arrest induced by nanomolar vinblastine correlates with loss of tension at the kinetochore, and that in response the checkpoint proteins bub1 and bubR1 are recruited to the kinetochore but mad2 is not. mad2 remains competent to respond and is recruited at higher drug doses that disrupt spindle association with the kinetochores. Further, although mad2 forms a complex with cdc20, it does not associate with bub1 or bubR1. We conclude that mammalian bub1/bubR1 and mad2 operate as elements of distinct pathways sensing tension and attachment, respectively.

314 citations


Journal ArticleDOI
TL;DR: A model in which redundant mechanisms enable kinetochore microtubule binding and checkpoint monitoring in the absence of CENP-E is explained, but where reduced microtubules-binding efficiency, exacerbated by poor positioning at the spindle poles, results in chronically monooriented chromosomes and mitotic arrest.
Abstract: CENP-E is a kinesin-like protein that when depleted from mammalian kinetochores leads to mitotic arrest with a mixture of aligned and unaligned chromosomes. In the present study, we used immunofluorescence, video, and electron microscopy to demonstrate that depletion of CENP-E from kinetochores via antibody microinjection reduces kinetochore microtubule binding by 23% at aligned chromosomes, and severely reduces microtubule binding at unaligned chromosomes. Disruption of CENP-E function also reduces tension across the centromere, increases the incidence of spindle pole fragmentation, and results in monooriented chromosomes approaching abnormally close to the spindle pole. Nevertheless, chromosomes show typical patterns of congression, fast poleward motion, and oscillatory motions. Furthermore, kinetochores of aligned and unaligned chromosomes exhibit normal patterns of checkpoint protein localization. These data are explained by a model in which redundant mechanisms enable kinetochore microtubule binding and checkpoint monitoring in the absence of CENP-E at kinetochores, but where reduced microtubule-binding efficiency, exacerbated by poor positioning at the spindle poles, results in chronically monooriented chromosomes and mitotic arrest. Chromosome position within the spindle appears to be a critical determinant of CENP-E function at kinetochores.

271 citations


Journal ArticleDOI
TL;DR: The results indicate that microtubule dynamics play an important role in Taxol resistance, and that both excessively rapid dynamics and suppressed dynamics impair mitotic spindle function and inhibit proliferation.
Abstract: Microtubule dynamics are crucial for mitotic spindle assembly and chromosome movement. Suppression of dynamics by Taxol appears responsible for the drug's potent ability to inhibit mitosis and cell proliferation. Although Taxol is an important chemotherapeutic agent, development of resistance limits its efficacy. To examine the role of microtubule dynamics in Taxol resistance, we measured the dynamic instability of individual rhodamine-labeled microtubules in Taxol-sensitive and -resistant living human cancer cells. Taxol-resistant A549-T12 and -T24 cell lines were selected from a human lung carcinoma cell line, A549. They are, respectively, 9- and 17-fold resistant to Taxol and require low concentrations of Taxol for proliferation. We found that microtubule dynamic instability was significantly increased in the Taxol-resistant cells. For example, with A549-T12 cells in the absence of added Taxol, microtubule dynamicity increased 57% as compared with A549 cells. The length and rate of shortening excursions increased 75 and 59%, respectively. These parameters were further increased in A549-T24 cells, with overall dynamicity increasing by 167% compared with parental cells. Thus, the decreased Taxol-sensitivity of these cells can be explained by their increased microtubule dynamics. When grown without Taxol, A549-T12 cells were blocked at the metaphase/anaphase transition and displayed abnormal mitotic spindles with uncongressed chromosomes. In the presence of 2-12 nM Taxol, the cells grew normally, suggesting that mitotic block resulted from excessive microtubule dynamics. These results indicate that microtubule dynamics play an important role in Taxol resistance, and that both excessively rapid dynamics and suppressed dynamics impair mitotic spindle function and inhibit proliferation.

249 citations


Journal ArticleDOI
TL;DR: In neuroblasts, hypomorphic dynein mutants accumulate in metaphase and block the normal redistribution of Rod from kinetochores to microtubules, so Dynein might contribute to shutting off the metaphase checkpoint, allowing anaphase to ensue.
Abstract: We describe the dynamics of kinetochore dynein-dynactin in living Drosophila embryos and examine the effect of mutant dynein on the metaphase checkpoint. A functional conjugate of dynamitin with green fluorescent protein accumulates rapidly at prometaphase kinetochores, and subsequently migrates off kinetochores towards the poles during late prometaphase and metaphase. This behaviour is seen for several metaphase checkpoint proteins, including Rough deal (Rod). In neuroblasts, hypomorphic dynein mutants accumulate in metaphase and block the normal redistribution of Rod from kinetochores to microtubules. By transporting checkpoint proteins away from correctly attached kinetochores, dynein might contribute to shutting off the metaphase checkpoint, allowing anaphase to ensue.

242 citations


Journal ArticleDOI
TL;DR: It is reported that cloned mice can be generated from fetal fibroblasts arrested at metaphase of the cell cycle, and it is illustrated that reprogramming can occur after nuclear transfer at metaphases of thecell cycle.
Abstract: Cloning using G(0)-arrested somatic cells has led to the suggestion that this stage of the cell cycle is necessary for the success of cloning. In this study we report that cloned mice can be generated from fetal fibroblasts arrested at metaphase of the cell cycle. The procedure involves fusing a metaphase-arrested fetal fibroblast to an enucleated oocyte. After parthenogenetic activation a polar body and single diploid pronucleus were formed. Some of these were allowed to develop to the blastocyst stage, while others were enucleated and the nucleus was transferred to an enucleated fertilized 1-cell embryo. After the single transfer technique, 2 out of 164 developed to late stages of gestation were dead with gross abnormalities. However, after the serial nuclear transfer, 5 out of 272 embryos were recovered live at Day 19.5, and 2 of these went on to develop into apparently normal adults. All of the cloned embryos showed severe placental hypertrophy and defective differentiation of placental tissues. This study illustrates that reprogramming can occur after nuclear transfer at metaphase of the cell cycle.

241 citations


Journal ArticleDOI
TL;DR: Monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid indicates that Kid generates the polar ejection force that pushes chromosome arms away from spindle poles in vertebrates- Cultured cells.
Abstract: Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific antibodies have one or more chromosomes that remain closely opposed to a spindle pole and fail to enter anaphase. In contrast, 82.5% of injected cells align chromosomes in metaphase, progress to anaphase, and display chromosome velocities not significantly different from control cells. However, injected cells lack chromosome oscillations, and chromosome orientation is atypical because chromosome arms extend toward spindle poles during both congression and metaphase. Furthermore, chromosomes cluster into a mass and fail to oscillate when Kid is perturbed in cells containing monopolar spindles. These data indicate that Kid generates the polar ejection force that pushes chromosome arms away from spindle poles in vertebrate-cultured cells. This force increases the efficiency with which chromosomes make bipolar spindle attachments and regulates kinetochore activities necessary for chromosome oscillation, but is not essential for chromosome congression.

234 citations


Journal ArticleDOI
TL;DR: Results indicate that the formation of nuclear blebs, chromatin strings, and micronuclei in malignant tissues is closely related to the breakage-fusion-bridge type of mitotic disturbances, independent of cytogenetic complexity and the grade of malignancy.
Abstract: Abnormalities in nuclear morphology are frequently observed in malignant tissues but the mechanisms behind these phenomena are still poorly understood. In this study, the relation between abnormal nuclear shape and chromosomal instability was explored in short-term tumor cell cultures. Mitotically unstable ring and dicentric chromosomes were identified by fluorescence in situ hybridization at metaphase and subsequently localized in interphase nuclei from five malignant soft tissue tumors. The vast majority (71 to 86%) of nuclear blebs, chromatin strings, and micronuclei contained material from the unstable chromosomes, whereas few (<11%) were positive for stable chromosomes. Nuclear morphology was also evaluated in fibroblasts and an osteosarcoma cell line exposed to irradiation. A linear correlation was found between the frequency of abnormalities in nuclear shape, on one hand, and cells with unstable chromosomes (r = 0.87) and anaphase bridge configurations (r = 0.98), on the other hand. The relation between nuclear shape and karyotypic pattern was investigated further in cultures from 58 tumors of bone, soft tissue, and epithelium. Blebs, strings, and micronuclei were significantly more frequent in tumors that contained rings, dicentrics, or telomeric associations than in those exhibiting only stable aberrations (P: < 0.001) and a positive correlation (r = 0.78) was found between the frequency of such nuclear abnormalities and the intratumor heterogeneity of structural chromosome aberrations. These results indicate that the formation of nuclear blebs, chromatin strings, and micronuclei in malignant tissues is closely related to the breakage-fusion-bridge type of mitotic disturbances. Abnormalities in nuclear shape may thus primarily be regarded as an indicator of genetic instability and intratumor heterogeneity, independent of cytogenetic complexity and the grade of malignancy.

Journal ArticleDOI
TL;DR: Although conditional lethal spc24‐2 and spc25‐7 cells form a mitotic spindle, the kinetochores remain in the mother cell body and fail to segregate the chromosomes, indicating that Spc24p has a function in checkpoint control.
Abstract: Here, we show that the budding yeast proteins Ndc80p, Nuf2p, Spc24p and Spc25p interact at the kinetochore. Consistently, Ndc80p, Nuf2p, Spc24p and Spc25p associate with centromere DNA in chromatin immunoprecipitation experiments, and SPC24 interacts genetically with MCM21 encoding a kinetochore component. Moreover, although conditional lethal spc24-2 and spc25-7 cells form a mitotic spindle, the kinetochores remain in the mother cell body and fail to segregate the chromosomes. Despite this defect in chromosome segregation, spc24-2 and spc25-7 cells do not arrest in metaphase in response to checkpoint control. Furthermore, spc24-2 cells showed a mitotic checkpoint defect when microtubules were depolymerized with nocodazole, indicating that Spc24p has a function in checkpoint control. Since Ndc80p, Nuf2p and Spc24p are conserved proteins, it is likely that similar complexes are part of the kinetochore in other organisms.

Journal ArticleDOI
TL;DR: The localization of HsMad1 to nuclear pore complexes suggests an alternate, non-mitotic role for the Mad1/Tax interaction in the viral transformation of cells.
Abstract: Mad1 was first identified in budding yeast as an essential component of the checkpoint system that monitors spindle assembly in mitosis and prevents premature anaphase onset. Using antibodies to the human homologue of Mad1 (HsMAD1), we have begun to characterize this protein in mammalian cells. HsMad1 is found localized at kinetochores in mitosis. The labeling is brightest in prometaphase and is absent from kinetochores at metaphase and anaphase. In cells where most chromosomes have reached the metaphase plate, those aligned at the plate show no labeling while remaining, unaligned chromosomes are still brightly labeled. We find HsMad1 associated with HsMad2. Association with p55CDC, a protein previously shown to bind HsMad2, was not detected. Surprisingly, unlike any other known mitotic checkpoint proteins, HsMad1 and HsMAD2 were found localized at nuclear pores throughout interphase. This was confirmed by co-labeling with an antibody to known nuclear pore complex proteins and by their co-purification with enriched nuclear envelope fractions. HsMad1 was identified serendipitously by its binding to a viral protein, HTLV-1 Tax, which affects transcription of viral and human proteins. The localization of HsMad1 to nuclear pore complexes suggests an alternate, non-mitotic role for the Mad1/Tax interaction in the viral transformation of cells.

Journal ArticleDOI
TL;DR: It is shown that the GAP activity of MgcRacGAP is required for cytokinesis, suggesting that inactivation of the Rho family of GTPases may be required for normal progression of cytokine progression.

Journal ArticleDOI
TL;DR: A Drosophila homolog of the DNA replication initiation inhibitor Geminin (Dm geminin) is identified and it is shown that it has all of the properties of Xenopus and human GeminIn.
Abstract: We have identified a Drosophila homolog of the DNA replication initiation inhibitor Geminin (Dm geminin) and show that it has all of the properties of Xenopus and human Geminin. During Drosophila development, Dm Geminin is present in cycling cells; protein accumulates during S phase and is degraded at the metaphase to anaphase transition. Overexpression of Dm geminin in embryos inhibits DNA replication, but cells enter mitosis arresting in metaphase, as in dup (cdt1) mutants, and undergo apoptosis. Overexpression of Dm Geminin also induces ectopic neural differentiation. Dm geminin mutant embryos exhibit anaphase defects at cycle 16 and increased numbers of S phase cells later in embryogenesis. In a partially female-sterile Dm geminin mutant, excessive DNA amplification in the ovarian follicle cells is observed. Our data suggest roles for Dm Geminin in limiting DNA replication, in anaphase and in neural differentiation.

Journal ArticleDOI
TL;DR: Findings indicate that centromere assembly in vertebrate cells proceeds in a hierarchical manner in which localization of the centRomere‐specific histone CENP‐A is an early event that occurs independently of CENp‐C and C ENP‐H.
Abstract: CENP-H has recently been discovered as a constitutive component of the centromere that co-localizes with CENP-A and CENP-C throughout the cell cycle. The precise function, however, remains poorly understood. We examined the role of CENP-H in centromere function and assembly by generating a conditional loss-of-function mutant in the chicken DT40 cell line. In the absence of CENP-H, cell cycle arrest at metaphase, consistent with loss of centromere function, was observed. Immunocytochemical analysis of the CENP-H-deficient cells demonstrated that CENP-H is necessary for CENP-C, but not CENP-A, localization to the centromere. These findings indicate that centromere assembly in vertebrate cells proceeds in a hierarchical manner in which localization of the centromere-specific histone CENP-A is an early event that occurs independently of CENP-C and CENP-H.

Journal ArticleDOI
TL;DR: To identify the regions responsible for its nuclear and subnuclear localization in interphase and mitotic cells, LNAI and various truncated forms were fused to a variant of green fluorescent protein, which demonstrated that nuclear localization of LNAi is due to a unique signal, which maps between amino acids 24 and 30.
Abstract: Human herpesvirus 8 is associated with all forms of Kaposi's sarcoma, AIDS-associated body cavity-based lymphomas, and some forms of multicentric Castleman's disease. Herpesvirus 8, like other gammaherpesviruses, can establish a latent infection in which viral genomes are stably maintained as multiple episomes. The latent nuclear antigen (LANA or LNAI) may play an essential role in the stable maintenance of latent episomes, notably by interacting concomitantly with the viral genomes and the metaphase chromosomes, thus ensuring an efficient transmission of the neoduplicated episomes to the daughter cells. To identify the regions responsible for its nuclear and subnuclear localization in interphase and mitotic cells, LNAI and various truncated forms were fused to a variant of green fluorescent protein. This enabled their localization and chromosome binding activity to be studied by low-light-level fluorescence microscopy in living HeLa cells. The results demonstrate that nuclear localization of LNAI is due to a unique signal, which maps between amino acids 24 and 30. Interestingly, this nuclear localization signal closely resembles those identified in EBNA1 from Epstein-Barr virus and herpesvirus papio. A region encompassing amino acids 5 to 22 was further proved to mediate the specific interaction of LNA1 with chromatin during interphase and the chromosomes during mitosis. The presence of putative phosphorylation sites in the chromosome binding sites of LNA1 and EBNA1 suggests that their activity may be regulated by specific cellular kinases.

Journal ArticleDOI
TL;DR: Evidence is provided that Stu2p promotes the dynamics of microtubules plus-ends in vivo and that these dynamics are critical for microtubule interactions with kinetochores and cortical sites in the cytoplasm.
Abstract: Stu2p is a member of a conserved family of microtubule-binding proteins and an essential protein in yeast. Here, we report the first in vivo analysis of microtubule dynamics in cells lacking a member of this protein family. For these studies, we have used a conditional Stu2p depletion strain expressing alpha-tubulin fused to green fluorescent protein. Depletion of Stu2p leads to fewer and less dynamic cytoplasmic microtubules in both G1 and preanaphase cells. The reduction in cytoplasmic microtubule dynamics is due primarily to decreases in both the catastrophe and rescue frequencies and an increase in the fraction of time microtubules spend pausing. These changes have significant consequences for the cell because they impede the ability of cytoplasmic microtubules to orient the spindle. In addition, recovery of fluorescence after photobleaching indicates that kinetochore microtubules are no longer dynamic in the absence of Stu2p. This deficiency is correlated with a failure to properly align chromosomes at metaphase. Overall, we provide evidence that Stu2p promotes the dynamics of microtubule plus-ends in vivo and that these dynamics are critical for microtubule interactions with kinetochores and cortical sites in the cytoplasm.

Journal ArticleDOI
TL;DR: Deletion analysis indicates that astrin's primary spindle-targeting domain is at the C terminus, although a secondary domain in the N terminus can target some of the protein to spindle poles.
Abstract: We purified microtubules from a mammalian mitotic extract and obtained an amino acid sequence from each microtubule-associated protein by using mass spectrometry. Most of these proteins are known spindle-associated components with essential functional roles in spindle organization. We generated antibodies against a protein identified in this collection and refer to it as astrin because of its association with astral microtubule arrays assembled in vitro. Astrin is ≈134 kDa, and except for a large predicted coiled-coil domain in its C-terminal region it lacks any known functional motifs. Astrin associates with spindle microtubules as early as prophase where it concentrates at spindle poles. It localizes throughout the spindle in metaphase and anaphase and associates with midzone microtubules in anaphase and telophase. Astrin also localizes to kinetochores but only on those chromosomes that have congressed. Deletion analysis indicates that astrin's primary spindle-targeting domain is at the C terminus, although a secondary domain in the N terminus can target some of the protein to spindle poles. Thus, we have generated a comprehensive list of major mitotic microtubule-associated proteins, among which is astrin, a nonmotor spindle protein.

Journal ArticleDOI
TL;DR: Even brief exposure of human oocytes to temperatures near 0°C causes profound alterations of the meiotic spindle, as observed by optical sectioning microscopy.

Journal ArticleDOI
TL;DR: Observations are consistent with detection of malattached chromosomes by a meiotic spindle checkpoint mechanism that monitors attachment and/or congression of homologous chromosome pairs.
Abstract: Mice heterozygous for Robertsonian centric fusion chromosomal translocations frequently produce aneuploid sperm. In this study RBJ/Dn x C57BL/6J F1 males, heterozygous for four Robertsonian translocations (2N=36), were analyzed to determine effects on germ cells of error during meiosis. Analysis of sperm by three color fluorescence in situ hybridization revealed significantly elevated aneuploidy, thus validating Robertsonian heterozygous mice as a model for production of chromosomally abnormal gametes. Primary spermatocytes from heterozygous males exhibited abnormalities of chromosome pairing in meiotic prophase and metaphase. In spite of prophase abnormalities, the prophase/metaphase transition occurred. However, an increased frequency of cells with misaligned condensed chromosomes was observed. Cytological analysis of both young and adult heterozygous mice revealed increased apoptosis in spermatocytes during meiotic metaphase I. Metaphase spermatocytes with misaligned chromosomes accounted for a significant proportion of the apoptotic spermatocytes, suggesting that a checkpoint process identifies aberrant meioses. Immunofluorescence staining revealed that kinetochores of chromosomes that failed to align on the spindle stained more intensely for kinetochore antigens CENP-E and CENP-F than did aligned chromosomes. Taken together, these observations are consistent with detection of malattached chromosomes by a meiotic spindle checkpoint mechanism that monitors attachment and/or congression of homologous chromosome pairs. However, the relatively high frequency of gametic aneuploidy suggests that the checkpoint mechanism does not efficiently eliminate all germ cells with chromosomal abnormalities.

Journal ArticleDOI
TL;DR: This work has identified a mutant of subunit 5 of the Drosophila melanogaster origin recognition complex (Orc5) and characterized the phenotypes of both the Orc5 and the previously identified Orc2 mutant, k43 and proposes that DNA replication defects trigger the mitotic arrest, due to the fact that frequent fragmentation was observed.
Abstract: The origin recognition complex (ORC) is a six subunit complex required for eukaryotic DNA replication initiation and for silencing of the heterochromatic mating type loci in Saccharomyces cerevisiae. Our discovery of the Drosophila ORC complex concentrated in the centric heterochromatin of mitotic cells in the early embryo and its interactions with heterochromatin protein 1 (HP-1) lead us to speculate that ORC may play some general role in chromosomal folding. To explore the role of ORC in chromosomal condensation, we have identified a mutant of subunit 5 of the Drosophila melanogaster origin recognition complex (Orc5) and have characterized the phenotypes of both the Orc5 and the previously identified Orc2 mutant, k43. Both Orc mutants died at late larval stages and surprisingly, despite a reduced number of S-phase cells, an increased fraction of cells were also detected in mitosis. For this latter population of cells, Orc mutants arrest in a defective metaphase with shorter and thicker chromosomes that fail to align at the metaphase plate within a poorly assembled mitotic spindle. In addition, sister chromatid cohesion was frequently lost. PCNA and MCM4 mutants had similar phenotypes to Orc mutants. We propose that DNA replication defects trigger the mitotic arrest, due to the fact that frequent fragmentation was observed. Thus, cells have a mitotic checkpoint that senses chromosome integrity. These studies also suggest that the density of functional replication origins and completion of S phase are requirements for proper chromosomal condensation.

Journal ArticleDOI
TL;DR: Xenopus oocytes microinjected with antibodies against the anaphase-promoting complex (APC) activator Fizzy or the APC core subunit Cdc27, or with the checkpoint protein Mad2 readily progress through the first meiotic cell cycle and arrest at second meiotic metaphase, but fail to segregate sister chromatids.
Abstract: Here we show that segregation of homologous chromosomes and that of sister chromatids are differentially regulated in Xenopus and possibly in other higher eukaryotes. Upon hormonal stimulation, Xenopus oocytes microinjected with antibodies against the anaphase-promoting complex (APC) activator Fizzy or the APC core subunit Cdc27, or with the checkpoint protein Mad2, a destruction-box peptide or methylated ubiquitin, readily progress through the first meiotic cell cycle and arrest at second meiotic metaphase. However, they fail to segregate sister chromatids and remain arrested at second meiotic metaphase when electrically stimulated or when treated with ionophore A34187, two treatments that mimic fertilization and readily induce chromatid segregation in control oocytes. Thus, APC is required for second meiotic anaphase but not for first meiotic anaphase.

Journal ArticleDOI
TL;DR: A mechanism by which FTIs inhibit progression through mitosis and tumor growth is by blocking bipolar spindle formation and chromosome alignment.

Journal ArticleDOI
TL;DR: It is demonstrated that levels of Aurora-B are increased in several human cancers, and it is shown here that HsINCENP protein levels are also significantly increased inSeveral colorectal cancer cell lines.
Abstract: The inner centromere protein (INCENP), which has previously been described in chicken, frog and mouse, is required for correct chromosome segregation and cytokinesis. We have identified the human INCENP gene by library screening and reverse transcription-polymerase chain reaction (RT-PCR) and localized it to chromosomal region 11q12. HsINCENP is a single-copy gene that consists of 17 exons and covers 25 kb of genomic DNA. The gene is expressed at highest levels in the colon, testis and prostate, consistent with its likely role in cell proliferation. HsINCENP encodes a highly basic protein of 915 amino acids that localizes to metaphase chromosomes and to the mitotic spindle and equatorial cortex at anaphase. Recently we showed that INCENP is stockpiled in a complex with the Aurora-B/XAIRK2 kinase in Xenopus eggs. Here we demonstrate that, consistent with such an interaction, the two proteins colocalize on human metaphase chromosomes. Levels of Aurora-B are increased in several human cancers, and we show here that HsINCENP protein levels are also significantly increased in several colorectal cancer cell lines.

Journal ArticleDOI
TL;DR: The data provide further evidence for the existence of two distinct asymmetry‐controlling mechanisms in neuroblasts both of which require snail family gene function: an inscuteable‐dependent mechanism that functions throughout mitosis and an inscrutable‐independent mechanism that acts during anaphase/telophase.
Abstract: Three snail family genes snail, escargot and worniu, encode related zinc finger transcription factors that mediate Drosophila central nervous system (CNS) development. We show that simultaneous removal of all three genes causes defective neuroblast asymmetric divisions; inscuteable transcription/translation is delayed/suppressed in the segmented CNS. Further more, defects in localization of cell fate determinants and orientation of the mitotic spindle in dividing neuroblasts are much stronger than those associated with inscuteable loss of function. In inscuteable neuroblasts, cell fate determinants are mislocalized during prophase and metaphase, yet during anaphase and telophase the great majority of mutant neuroblasts localize these determinants as cortical crescents overlying one of the spindle poles. This phenomenon, known as ‘telophase rescue’, does not occur in the absence of the snail family genes; moreover, in contrast to inscuteable mutants, mitotic spindle orientation is completely randomized. Our data provide further evidence for the existence of two distinct asymmetry-controlling mechanisms in neuroblasts both of which require snail family gene function: an inscuteable-dependent mechanism that functions throughout mitosis and an inscuteable-independent mechanism that acts during anaphase/telophase.

Journal ArticleDOI
TL;DR: The features of mitotic death do not simply represent aberrations of dying cells but are indicative of a switch to amitotic modes of cell survival that may provide additional mechanisms of genotoxic resistance.
Abstract: Mitotic death is a delayed response of p53 mutant tumours that are resistant to genotoxic damage. Questions surround why this response is so delayed and how its mechanisms serve a survival function. After uncoupling apoptosis from G1 and S phase arrests and adapting these checkpoints, p53 mutated tumour cells arrive at the G2 compartment where decisions regarding survival and death are made. Missed or insufficient DNA repair in G1 and S phases after severe genotoxic damage results in cells arriving in G2 with an accumulation of point mutations and chromosome breaks. Double strand breaks can be repaired by homologous recombination during G2 arrest. However, cells with excessive chromosome lesions either directly bypass the G2/M checkpoint, starting endocycles from G2 arrest, or are subsequently detected by the spindle checkpoint and present with the features of mitotic death. These complex features include apoptosis from metaphase and mitosis restitution, the latter of which can also facilitate transient endocycles, producing endopolyploid cells. The ability of cells to initiate endocycles during G2 arrest and mitosis restitution most likely reflects their similar molecular environments, with down-regulated mitosis promoting factor activity. Resulting endocycling cells have the ability to repair damaged DNA, and although mostly reproductively dead, in some cases give rise to mitotic progeny. We conclude that the features of mitotic death do not simply represent aberrations of dying cells but are indicative of a switch to amitotic modes of cell survival that may provide additional mechanisms of genotoxic resistance.

Journal ArticleDOI
TL;DR: It is shown that fission yeast Dis1 and the related protein Mtc1/Alp14 are both able to bind microtubules in vitro and share an essential function for viability in vivo and may play a dual role by becoming a part of the kinetochores in an M phase-specific manner.

Journal ArticleDOI
TL;DR: The role of xFizzy during meiosis is investigated using an antisense depletion approach and p90(Rsk) is sufficient not only to partially inhibit APC activity, but also to stimulate cyclin B synthesis in Meiosis II.

Journal ArticleDOI
TL;DR: Two strongly hypomorphic mutations of polo are reported that arrest cells of the larval brain at a point in metaphase when the majority of sister kinetochores have separated by between 20–50% of the total spindle length in intact cells.
Abstract: The Drosophila gene polo encodes a conserved protein kinase known to be required to organize spindle poles and for cytokinesis. Here we report two strongly hypomorphic mutations of polo that arrest cells of the larval brain at a point in metaphase when the majority of sister kinetochores have separated by between 20–50% of the total spindle length in intact cells. In contrast, analysis of sister chromatid separation in squashed preparations of cells indicates that some 83% of sisters remain attached. This suggests the separation seen in intact cells requires the tension produced by a functional spindle. The point of arrest corresponds to the spindle integrity checkpoint; Bub1 protein and the 3F3/2 epitope are present on the separated kinetochores and the arrest is suppressed by a bub1 mutation. The mutant mitotic spindles are anastral and have assembled upon centrosomes that are associated with Centrosomin and the abnormal spindle protein (Asp), but neither with γ-tubulin nor CP190. We discuss roles for Polo kinase in recruiting centrosomal proteins and in regulating progression through the metaphase–anaphase checkpoint.