scispace - formally typeset
Search or ask a question
Topic

Metaphase

About: Metaphase is a research topic. Over the lifetime, 6925 publications have been published within this topic receiving 291590 citations. The topic is also known as: GO:0007091 & mitotic metaphase/anaphase transition.


Papers
More filters
Journal ArticleDOI
TL;DR: It was concluded that the relationships between parts of the cycle are non-random and that compensating mechanisms apparently help regulate the lengths of successive part of the mitotic cycle in individual cells.
Abstract: Data obtained with time lapse cinemicrographic techniques showed that the distribution of generation times for exponentially proliferating human amnion cells in culture is skewed to the right and that reciprocals of generation times appear normally distributed. As shown for bacteria, the true age distribution is much broader than theoretical distributions which fail to take into account the dispersion of generation times. By means of the technique utilizing autoradiographic detection of tritiated thymidine in cells whose mitotic histories were recorded by time lapse cinemicrography, it was shown that the G1 distribution is similar to the generation time distribution but is more variable. In our experiments, the G2 + prophase distribution resembled the generation time and G1 distributions. The data suggested two possibilities for S: either it is relatively constant, or it is inversely related to the lengths of G1 and G2 + prophase. Since G1 is more variable than the total cycle, and G2 + prophase more variable than the computed sum of S + G2 + prophase + metaphase, it was concluded that the relationships between parts of the cycle are non-random and that compensating mechanisms apparently help regulate the lengths of successive parts of the mitotic cycle in individual cells.

105 citations

Journal ArticleDOI
TL;DR: The discovery of a novel bipartite organization in the parasite centrosome that segregates the functions of karyokinesis and cytokinesis provides an explanation for how cell cycle flexibility is achieved in apicomplexan life cycles.
Abstract: Apicomplexan parasites can change fundamental features of cell division during their life cycles, suspending cytokinesis when needed and changing proliferative scale in different hosts and tissues. The structural and molecular basis for this remarkable cell cycle flexibility is not fully understood, although the centrosome serves a key role in determining when and how much replication will occur. Here we describe the discovery of multiple replicating core complexes with distinct protein composition and function in the centrosome of Toxoplasma gondii. An outer core complex distal from the nucleus contains the TgCentrin1/TgSfi1 protein pair, along with the cartwheel protein TgSas-6 and a novel Aurora-related kinase, while an inner core closely aligned with the unique spindle pole (centrocone) holds distant orthologs of the CEP250/C-Nap protein family. This outer/inner spatial relationship of centrosome cores is maintained throughout the cell cycle. When in metaphase, the duplicated cores align to opposite sides of the kinetochores in a linear array. As parasites transition into S phase, the cores sequentially duplicate, outer core first and inner core second, ensuring that each daughter parasite inherits one copy of each type of centrosome core. A key serine/threonine kinase distantly related to the MAPK family is localized to the centrosome, where it restricts core duplication to once per cycle and ensures the proper formation of new daughter parasites. Genetic analysis of the outer core in a temperature-sensitive mutant demonstrated this core functions primarily in cytokinesis. An inhibition of ts-TgSfi1 function at high temperature caused the loss of outer cores and a severe block to budding, while at the same time the inner core amplified along with the unique spindle pole, indicating the inner core and spindle pole are independent and co-regulated. The discovery of a novel bipartite organization in the parasite centrosome that segregates the functions of karyokinesis and cytokinesis provides an explanation for how cell cycle flexibility is achieved in apicomplexan life cycles.

105 citations

Journal ArticleDOI
TL;DR: It is found that a second complex, hSMC1/hSMC3, is required for metaphase progression in mitotic cells, suggesting that two distinct classes of SMC protein complexes are involved in different aspects of mitotic chromosome organization in human cells.
Abstract: The structural maintenance of chromosomes (SMC) family member proteins previously were shown to play a critical role in mitotic chromosome condensation and segregation in yeast and Xenopus. Other family members were demonstrated to be required for DNA repair in yeast and mammals. Although several different SMC proteins were identified in different organisms, little is known about the SMC proteins in humans. Here, we report the identification of four human SMC proteins that form two distinct heterodimeric complexes in the cell, the human chromosome-associated protein (hCAP)-C and hCAP-E protein complex (hCAP-C/hCAP-E), and the human SMC1 (hSMC1) and hSMC3 protein complex (hSMC1/hSMC3). The hCAP-C/hCAP-E complex is the human ortholog of the Xenopus chromosome-associated protein (XCAP)-C/XCAP-E complex required for mitotic chromosome condensation. We found that a second complex, hSMC1/hSMC3, is required for metaphase progression in mitotic cells. Punctate vs. diffuse distribution patterns of the hCAP-C/hCAP-E and hSMC1/hSMC3 complexes in the interphase nucleus indicate independent behaviors of the two complexes during the cell cycle. These results suggest that two distinct classes of SMC protein complexes are involved in different aspects of mitotic chromosome organization in human cells.

104 citations

Journal ArticleDOI
TL;DR: These analyses of mechanisms responsible for contrast enhancement in doubly stained chromosomes are used to derive information about the relationship between chromosome composition and banding patterns.
Abstract: The ability of electronic energy transfer and direct binding competition between pairs of dyes to enhance contrast in human or bovine metaphase chromosome staining patterns is illustrated, and the relative effectiveness of these two mechanism compared. The existence of energy transfer between quinacrine or 33258 Hoechst and 7-amino-actinomycin D in doubly stained chromosomes is demonstrated directly by microfluorometry. The ability of the dyes 7-amino-actinomycin D, methyl green, or netropsin, acting as counterstains, to displace quinacrine, 33258 Hoechst, or chromomycin A3 from chromosomes, is estimated by quantitative analysis of energy transfer data, by photobleaching of the counterstains, or by selective removal of counterstains by appropriate synthetic polynucleotides. Effects on the fluorescence of soluble 33258 Hoechst-DNA complexes due to energy transfer or binding displacement, by actinomycin D or netropsin, respectively, are further differentiated by nanosecond fluorescence decay measurements. Examples are presented of dye combinations for which (a) energy transfer is the primary mechanism operative, (b) binding competition exists, with consequences reinforcing those due to energy transfer, or (c) binding competition is the most important interaction. These analyses of mechanisms responsible for contrast enhancement in doubly stained chromosomes are used to derive information about the relationship between chromosome composition and banding patterns.

104 citations

Journal ArticleDOI
TL;DR: Subnuclear distribution of the human herpesvirus-8 (HHV-8)- encoded nuclear protein LNA-1 was analysed at high resolution in body cavity (BC) lymphoma-derived cell lines, in cell hybrids between BC cells and various human and mouse cells and in freshly infected K562 and ECV cell lines to show that LNAs associates preferentially with the border of heterochromatin in the interphase nuclei.
Abstract: Subnuclear distribution of the human herpesvirus-8 (HHV-8)- encoded nuclear protein LNA-1 was analysed at high resolution in body cavity (BC) lymphoma-derived cell lines, in cell hybrids between BC cells and various human and mouse cells and in freshly infected K562 and ECV cell lines. Three-dimensional reconstruction of nuclei from optical sections and quantitative analysis of the distribution of LNA-1 fluorescence in relation to chromatin showed that LNA-1 associates preferentially with the border of heterochromatin in the interphase nuclei. This was further confirmed in the following systems: in endo- and exonuclease-digested nuclei, in human–mouse (BC-1–Sp2- 0) hybrids and on chromatin spreads. LNA-1 was found to bind to mitotic chromosomes at random. Epstein–Barr virus (EBV), but not HHV-8, was rapidly lost from mouse–human hybrid cells in parallel with the loss of human chromosomes. HHV-8 could persist on the residual mouse background for more than 8 months. In early human–mouse hybrids that contain a single fused nucleus, LNA-1 preferentially associates with human chromatin. After the gradual loss of the human chromosomes, LNA-1 becomes associated with the murine pericentromeric heterochromatin. In human–human hybrids derived from the fusion of the HHV-8-carrying BCBL-1 cells and the EBV-immortalized lymphoblastoid cell line IB4, LNA-1 did not co-localize with EBNA-1, EBNA-2, EBNA-5 or EBNA-6. LNA-1 was not associated with PML containing ND10 bodies either. DNase but not RNase or detergent treatment of isolated nuclei destroys LNA-1 bodies. In advanced apoptotic cells LNA- 1 bodies remain intact but are not included in the apoptotic bodies themselves.

104 citations


Network Information
Related Topics (5)
Chromatin
50.7K papers, 2.7M citations
86% related
Histone
28.8K papers, 1.5M citations
82% related
Mutation
45.2K papers, 2.6M citations
80% related
Gene
211.7K papers, 10.3M citations
80% related
Endoplasmic reticulum
48.3K papers, 2.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022116
202182
202087
2019113
201888