scispace - formally typeset
Search or ask a question
Topic

Metaphase

About: Metaphase is a research topic. Over the lifetime, 6925 publications have been published within this topic receiving 291590 citations. The topic is also known as: GO:0007091 & mitotic metaphase/anaphase transition.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that phosphorylation of nucleolin by Cdc2 kinase generates the TG-3 epitope, which is a critical event and the point of convergence of two distinct pathways, mitosis and neurodegeneration.

99 citations

Journal ArticleDOI
01 Jan 1984-Cell
TL;DR: A human autoantiserum that recognizes specific determinants present both on the nuclear envelope of interphase cells and the periphery of metaphase chromosomes suggests a pathway for chromosome organization throughout the cell cycle.

99 citations

Journal ArticleDOI
TL;DR: In this paper, the human TOP1 gene encoding DNA topoisomerase I (EC 5.99.1.2) was mapped to the long arm of chromosome 20, in the region q12-13.2, by hybridization of a radioactively labeled TOP1 probe to human metaphase chromosomes and to a panel of rodent-human somatic hybrids retaining overlapping subsets of human chromosomes.
Abstract: cDNA clones of the human TOP1 gene encoding DNA topoisomerase I (EC 5.99.1.2) have been obtained by immunochemical screening of phage lambda libraries expressing human cDNA segments, using rabbit antibodies raised against purified HeLa DNA topoisomerase I. Hybridization patterns between the cloned cDNA sequences and human cellular DNA and cytoplasmic mRNAs indicate that human TOP1 is a single-copy gene. The chromosomal location of the gene has been mapped to the long arm of chromosome 20, in the region q12-13.2, by hybridization of a radioactively labeled TOP1 cDNA probe to human metaphase chromosomes and to a panel of rodent-human somatic hybrids retaining overlapping subsets of human chromosomes.

98 citations

Journal ArticleDOI
TL;DR: The evolution of compound kinetochores of the Indian muntjac may have been facilitated by the nonrandom aggregation of interphase kinetchores in the nuclei of the ancestral species.
Abstract: The chromosomes of the Indian muntjac (Muntiacus muntjak vaginalis) are unique among mammals due to their low diploid number (2N=6♀, 7♂) and large size. It has been proposed that the karyotype of this small Asiatic deer evolved from a related deer the Chinese muntjac (Muntiacus reevesi) with a diploid chromosome number of 2n= 46 consisting of small telocentric chromosomes. In this study we utilized a kinetochore-specific antiserum derived from human patients with the autoimmune disease scleroderma CREST as an immunofluorescent probe to examine kinetochores of the two muntjac species. Since CREST antiserum binds to kinetochores of mitotic chromosomes as well as prekinetochores in interphase nuclei, it was possible to identify and compare kinetochore morphology throughout the cell cycle. Our observations indicated that the kinetochores of the Indian muntjac are composed of a linear beadlike array of smaller subunits that become revealed during interphase. The kinetochores of the Chinese muntjac consisted of minute fluorescent dots located at the tips of the 46 telocentric chromosomes. During interphase, however, the kinetochores of the Chinese muntjac clustered into small aggregates reminiscent of the beadlike arrays seen in the Indian muntjac. Morphometric measurements of fluorescence indicated an equivalent amount of stained material in the two species. Our observations indicate that the kinetochores of the Indian muntjac are compound structures composed of linear arrays of smaller units the size of the individual kinetochores seen on metaphase chromosomes of the Chinese muntjac. Our study supports the notion that the kinetochores of the Indian muntjac evolved by linear fusion of unit kinetochores of the Chinese muntjac. Moreover, it is concluded that the evolution of compound kinetochores may have been facilitated by the nonrandom aggregation of interphase kinetochores in the nuclei of the ancestral species.

98 citations

Journal ArticleDOI
TL;DR: A genetic locus rough deal is described in Drosophila melanogaster, identified by mutations that interfere with the faithful transmission of chromosomes to daughter cells during mitosis, suggesting that the reduced fidelity of chromosome transmission to the daughter cells is due to a failure in a mechanism involved in assuring the proper release of sister chromatids.
Abstract: We describe a genetic locus rough deal (rod) in Drosophila melanogaster, identified by mutations that interfere with the faithful transmission of chromosomes to daughter cells during mitosis. Five mutant alleles were isolated, each associated with a similar set of mitotic abnormalities in the dividing neuroblasts of homozygous mutant larvae: high frequencies of aneuploid cells and abnormal anaphase figures, in which chromatids may lag, form bridges, or completely fail to separate. Surviving homozygous adults are sterile, and show cuticular defects associated with cell death, i.e., roughened eyes, sparse abdominal bristles, and notched wing margins. The morphological process of spermatogenesis is largely unaffected and motile sperm are produced, but meiocyte aneuploidy is common. The nature of the observed abnormalities in mitotic cells suggests that the reduced fidelity of chromosome transmission to the daughter cells is due to a failure in a mechanism involved in assuring the proper release of sister chromatids.

98 citations


Network Information
Related Topics (5)
Chromatin
50.7K papers, 2.7M citations
86% related
Histone
28.8K papers, 1.5M citations
82% related
Mutation
45.2K papers, 2.6M citations
80% related
Gene
211.7K papers, 10.3M citations
80% related
Endoplasmic reticulum
48.3K papers, 2.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022116
202182
202087
2019113
201888