scispace - formally typeset
Search or ask a question
Topic

Metaphase

About: Metaphase is a research topic. Over the lifetime, 6925 publications have been published within this topic receiving 291590 citations. The topic is also known as: GO:0007091 & mitotic metaphase/anaphase transition.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that 8-oxoG is unevenly distributed in the normal human genome and that the distribution pattern is conserved among different individuals, and regions with a high frequency of recombination and single nucleotide polymorphisms (SNPs) are preferentially located within chromosomal regions withA high density of 8-OxoG.
Abstract: 8-Oxoguanine (8-oxoG), a major spontaneous form of oxidative DNA damage, is considered to be a natural cause of genomic diversity in organisms because of its mutagenic potential. The steady-state level of 8-oxoG in the nuclear genome of a human cell has been estimated to be several residues per 10(6) guanines. In the present study, to clarify the genome-wide distribution of 8-oxoG in the steady state, we performed fluorescence in situ detection of 8-oxoG on human metaphase chromosomes using a monoclonal antibody. Multiple dot-like signals were observed on each metaphase chromosome. We then mapped the position of the signal at megabase resolution referring to the cytogenetically identified chromosomal band, and demonstrated that 8-oxoG is unevenly distributed in the normal human genome and that the distribution pattern is conserved among different individuals. Moreover, we found that regions with a high frequency of recombination and single nucleotide polymorphisms (SNPs) are preferentially located within chromosomal regions with a high density of 8-oxoG. Our findings suggest that 8-oxoG is one of the main causes of frequent recombinations and SNPs in the human genome, which largely contribute to the genomic diversity in human beings.

92 citations

Journal ArticleDOI
19 Mar 1993-Science
TL;DR: In Xenopus oocytes, ablation of synthesis of cyclin-dependent kinase 2 (Cdk2) during meiosis resulted in absence of the metaphase II block, even though the Mosxe protein kinase was fully active at metaphase.
Abstract: The unfertilized eggs of vertebrates are arrested in metaphase of meiosis II because of the activity of cytostatic factor (CSF). Xenopus CSF is thought to contain the product of the Mos proto-oncogene, but other proteins synthesized during meiosis II are also required for arrest induced by CSF. In Xenopus oocytes, ablation of synthesis of cyclin-dependent kinase 2 (Cdk2) during meiosis resulted in absence of the metaphase II block, even though the Mosxe protein kinase was fully active at metaphase. Introduction of purified Cdk2 restored metaphase II arrest, and increasing the amount of Cdk2 during meiosis I (when Mosxe is present) led to metaphase arrest at meiosis I. These data indicate that metaphase arrest is a result of cooperation between a proto-oncogene kinase and a cyclin-dependent kinase and illustrate the interaction of a cell growth regulator with a cell cycle control element.

92 citations

Journal ArticleDOI
TL;DR: In this paper, the boundary areas of individual chromosomes during interphase using a sensitive method based on replication labeling and immunocytochemistry were analyzed using confocal imaging of interphase nuclei revealed labeled chromosomal domains containing fiberlike structures and unlabeled areas.
Abstract: Fluorescence in situ hybridization has demonstrated that chromosomes form individual territories in interphase nuclei. However, this technique is not suitable to determine whether territories are mutually exclusive or interwoven. This notion, however, is essential for understanding functional organizations in the cell nucleus. Here, we analyze boundary areas of individual chromosomes during interphase using a sensitive method based on replication labeling and immunocytochemistry. Thymidine analogues IdUrd and CldUrd were incorporated during S-phase into DNA of Chinese Hamster fibroblasts. Cells labeled with IdUrd were fused with cells labeled with CldUrd. Fused nuclei contained both IdUrd or CldUrd labeled chromosomes. Alternatively, the two labels were incorporated sequentially during successive S-phases and segregated to separate chromosomes by culturing the cells one more cell cycle. Metaphase spreads showed IdUrd-, CldUrd- and unlabeled chromosomes. Some chromatids were divided sharply in differently labeled subdomains by sister chromatid exchanges. With both methods, confocal imaging of interphase nuclei revealed labeled chromosomal domains containing fiber-like structures and unlabeled areas. At various sites, fiber-like structures were embedded in other territories. Even so, essentially no overlap between chromosome territories or between subdomains within a chromosome was observed. These observations indicate that chromosome territories and chromosomal subdomains in G(1)-phase are mutually exclusive at the resolution of the light microscope.

92 citations

Journal ArticleDOI
TL;DR: Overexpression of CycB2;2 in rice plants resulted in acceleration of root growth without any increase in cell size, indicating thatCycB 2;2 promoted cell division probably through association with CDKB2 in the root meristem.
Abstract: Cyclin-dependent kinases (CDKs) are involved in the control of cell cycle progression. Plant A-type CDKs are functional homologs of yeast Cdc2/Cdc28 and are expressed throughout the cell cycle. In contrast, B-type CDK (CDKB) is a family of mitotic CDKs expressed during the S/M phase, and its precise function remains unknown. Here, we identified two B2-type cyclins, CycB2;1 and CycB2;2, as a specific partner of rice CDKB2;1. The CDKB2;1-CycB2 complexes produced in insect cells showed a significant level of kinase activity in vitro, suggesting that CycB2 binds to and activates CDKB2. We then expressed green fluorescent protein (GFP)-fused CDKB2;1 and CycB2;2 in tobacco BY2 cells to investigate their subcellular localization during mitosis. Surprisingly, the fluorescence signal of CDKB2;1-GFP was tightly associated with chromosome alignment as well as with spindle structure during the metaphase. During the telophase, the signal was localized to the spindle midzone and the separating sister chromosomes, and then to the phragmoplast. On the other hand, the CycB2;2-GFP fluorescence signal was detected in nuclei during the interphase and prophase, moved to the metaphase chromosomes, and then disappeared completely after the cells passed through the metaphase. Co-localization of CDKB2;1-GFP and CycB2;2-GFP on chromosomes aligned at the center of the metaphase cells suggests that the CDKB2-CycB2 complex may function in retaining chromosomes at the metaphase plate. Overexpression of CycB2;2 in rice plants resulted in acceleration of root growth without any increase in cell size, indicating that CycB2;2 promoted cell division probably through association with CDKB2 in the root meristem.

92 citations

Journal ArticleDOI
TL;DR: Structural structure within the nucleus of plants is becoming increasingly clear in both metaphase and interphase nuclei, although there are conflicting data about the relative positions of individual and pairs of chromosome.

92 citations


Network Information
Related Topics (5)
Chromatin
50.7K papers, 2.7M citations
86% related
Histone
28.8K papers, 1.5M citations
82% related
Mutation
45.2K papers, 2.6M citations
80% related
Gene
211.7K papers, 10.3M citations
80% related
Endoplasmic reticulum
48.3K papers, 2.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022116
202182
202087
2019113
201888