scispace - formally typeset
Search or ask a question
Topic

Metaphase

About: Metaphase is a research topic. Over the lifetime, 6925 publications have been published within this topic receiving 291590 citations. The topic is also known as: GO:0007091 & mitotic metaphase/anaphase transition.


Papers
More filters
Journal ArticleDOI
TL;DR: The bulk of the acid-soluble nonhistone proteins of metaphase chromosomes was found to be polymerized through disulfide bridges; corresponding interphase nonhistones display no evidence of similar polymerization.

88 citations

Journal ArticleDOI
TL;DR: This unit provides protocols for CGH, for preparation of metaphase chromosomes, tumor and normal DNAs for FISH and for the microscopy and image analysis of CGH experiments.
Abstract: Comparative Genomic Hybridization (CGH) is a powerful molecular cytogenetic technique that permits assessment of DNA copy number on a genome-wide scale. Of note, this methodology uses tumor DNA as a probe for fluorescence in situ hybridization (FISH) to normal metaphase chromosomes and does not require dividing cells from the tumor specimen. This unit provides protocols for CGH, for preparation of metaphase chromosomes, tumor and normal DNAs for FISH and for the microscopy and image analysis of CGH experiments.

88 citations

Journal ArticleDOI
TL;DR: It is shown that mitotic LIMK1 activation is critical for accurate spindle orientation in mammalian cells and suggested that LIMK 1-mediated cofilin phosphorylation is required for accurateSpindle orientation by stabilizing cortical actin networks during mitosis.

87 citations

Journal ArticleDOI
TL;DR: The association of RNA polymerase with the internal network of the nuclear matrix is consistent with the idea that transcription occurs in close association with this structure.
Abstract: SUMMARY The protein compositions of purified metaphase chromosomes, nuclei and their residual scaffold and matrix structures, are reported. The protein pattern of nuclei on sodium dodecyl sulphate/polyacrylamide gels is considerably more complex and rich in non-histone proteins than that of chromosomes. Nuclei contain about three to four times more non-histone proteins relative to their histones than chromosomes. Besides the protein components of the peripheral lamina, several protein bands are specific or at least highly enriched in nuclei. Conversely, two proteins X0 (33×10 3 M r ) and X1 (37×10 3 M r ) are highly enriched in the pattern of metaphase chromosomes. We have compared morphologically the previously defined nuclear matrices type I and II. The type I nuclear matrix is composed of the known lamina proteins, which form the peripheral lamina structure, and a complex series of proteins that form the internal network of the matrix as observed by electron microscopy. This internal network is stabilized similarly to the metaphase scaffolding by metalloprotein interaction. Both the scaffolding and the internal network of the matrix dissociate if thiols or certain metal chelators are used in the extraction buffer. Under these conditions the resulting nuclear structure, called matrix type II, appears empty in the electron microscope, with the exception of some residual nucleolar material. This latter material can be extracted from the internal network by exhaustive treatment of the nuclei with RNase before extraction with high salt. Immunoblotting and activity studies show RNA polymerase II to be tightly bound to the type I, but not to the type II matrix, or to the scaffolding structure. No polymerase II enzyme was detected in isolated metaphase chromosomes. Another nuclear enzyme, poly(ADP-ribose) polymerase is not bound to either of the residual nuclear matrices or to the scaffolding structures. The association of RNA polymerase with the internal network of the nuclear matrix is consistent with the idea that transcription occurs in close association with this structure.

87 citations

Journal ArticleDOI
TL;DR: The ability to sort sufficient quantities of dog chromosomes for the production of chromosome-specific DNA libraries has the potential to accelerate the physical and genetic mapping of the dog genome.
Abstract: Using peripheral blood lymphocyte cultures and dual-laser flow cytometry, we have routinely obtained high-resolution bivariate flow karyotypes of the dog in which 32 peaks are resolved. To allow the identification of the chromosome types in each peak, chromosomes were flow sorted, amplified and labelled by polymerase chain reaction with partially degenerate primers and hybridized onto metaphase spreads of a male dog. The chromosome paints from 22 of the 32 peaks each hybridized to single homologue pairs and eight peaks each hybridized to two pairs. Paints from the remaining two peaks hybridized to only one homologue each in the male metaphase spread, thus corresponding to the sex chromosomes X and Y. All of the 38 pairs of autosomes and the two sex chromosomes of the dog could be accounted for in these painting experiments. The positions of chromosomes 1-21 were assigned to the flow karyotype (only chromosomes 1-21 have as yet been officially designated). The high-resolution flow karyotype and the chromosome paints will facilitate further standardization of the dog karyotype. The ability to sort sufficient quantities of dog chromosomes for the production of chromosome-specific DNA libraries has the potential to accelerate the physical and genetic mapping of the dog genome.

87 citations


Network Information
Related Topics (5)
Chromatin
50.7K papers, 2.7M citations
86% related
Histone
28.8K papers, 1.5M citations
82% related
Mutation
45.2K papers, 2.6M citations
80% related
Gene
211.7K papers, 10.3M citations
80% related
Endoplasmic reticulum
48.3K papers, 2.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022116
202182
202087
2019113
201888