scispace - formally typeset
Search or ask a question
Topic

Metaphase

About: Metaphase is a research topic. Over the lifetime, 6925 publications have been published within this topic receiving 291590 citations. The topic is also known as: GO:0007091 & mitotic metaphase/anaphase transition.


Papers
More filters
Journal ArticleDOI
27 May 2004-Oncogene
TL;DR: A molecular pathway through which DNA damage, failure to arrest the cell cycle and inhibition of apoptosis can favor the occurrence of cytogenetic abnormalities that are likely to participate in oncogenesis is delineated.
Abstract: A conflict in cell cycle progression or DNA damage can lead to mitotic catastrophe when the DNA structure checkpoints are inactivated, for instance when the checkpoint kinase Chk2 is inhibited. Here we show that in such conditions, cells die during the metaphase of the cell cycle, as a result of caspase activation and subsequent mitochondrial damage. Molecular ordering of these phenomena reveals that mitotic catastrophe occurs in a p53-independent manner and involves a primary activation of caspase-2, upstream of cytochrome c release, followed by caspase-3 activation and chromatin condensation. Suppression of caspase-2 by RNA interference or pseudosubstrate inhibitors as well as blockade of the mitochondrial membrane permeabilization prevent the mitotic catastrophe and allow cells to further proceed the cell cycle beyond the metaphase, leading to asymmetric cell division. Heterokarya generated by the fusion of nonsynchronized cells can be driven to divide into three or more daughter cells when Chk2 and caspases are simultaneously inhibited. Such multipolar divisions, resulting from suppressed mitotic catastrophe, lead to the asymmetric distribution of cytoplasm (anisocytosis), DNA (anisokaryosis) and chromosomes (aneuploidy). Similarly, in a model of DNA damage-induced mitotic catastrophe, suppression of apoptosis leads to the generation of aneuploid cells. Our findings delineate a molecular pathway through which DNA damage, failure to arrest the cell cycle and inhibition of apoptosis can favor the occurrence of cytogenetic abnormalities that are likely to participate in oncogenesis.

297 citations

Journal ArticleDOI
TL;DR: It is shown that topoIIalpha and 13S condensin constitute the two main components of the chromosomal scaffold on histone-depleted chromosomes, and a two-step assembly process is proposed to generate the barber pole appearance of the native-like scaffolding.

296 citations

Journal ArticleDOI
TL;DR: The specificity of the staining of CREST scleroderma patient serum was investigated by immunofluorescence and immunoelectron microscopy, and it was concluded that the presumptive kinetochores duplicate in G2 of the cell cycle.
Abstract: The specificity of the staining of CREST scleroderma patient serum was investigated by immunofluorescence and immunoelectron microscopy. The serum was found to stain the centromere region of mitotic chromosomes in many mammalian cell types by immunofluorescence. It also localized discrete spots in interphase nuclei which we have termed "presumptive kinetochores." The number of presumptive kinetochores per cell corresponds to the chromosome number in the cell lines observed. Use of the immunoperoxidase technique to localize the antisera on PtK2 cells at the electron microscopic level revealed the specificity of the sera for the trilaminar kinetochore disks on metaphase and anaphase chromosomes. Presumptive kinetochores in the interphase nuclei were also visible in the electron microscope as randomly arranged, darkly stained spheres averaging 0.22 micrometers in diameter. Preabsorption of the antisera was attended using microtubule protein, purified tubulin, actin, and microtubule-associated proteins. None of these proteins diminished the immunofluorescence staining of the sera, indicating that the antibody-specific antigen(s) is a previously unrecognized component of the kinetochore region. In some interphase cells observed by both immunofluorescence and immunoelectron microscopy, the presumptive kinetochores appeared as double rather than single spots. Analysis of results obtained using a microspectrophotometer to quantify DNA in individual cells double stained with scleroderma serum and the DNA fluorescent dye, propidium iodide, led to the conclusion that the presumptive kinetochores duplicate in G2 of the cell cycle.

295 citations

Journal ArticleDOI
TL;DR: It is proposed that mutual antagonism between the APC and the SAC yields a positive feedback loop that amplifies the ability of TAME to induce mitotic arrest.

294 citations

Journal ArticleDOI
TL;DR: The first in vivo verified phosphorylation site for human BubR1 is demonstrated, Plk1 is identified as the kinase responsible for causing the characteristic mitotic BubR 1 upshift, and a KT-specific function is attributed to the hyperphosphorylated form of BubR2 in the stabilization of KT-MT interactions.
Abstract: Mitotic phosphorylation of the spindle checkpoint component BubR1 is highly conserved throughout evolution. Here, we demonstrate that BubR1 is phosphorylated on the Cdk1 site T620, which triggers the recruitment of Plk1 and phosphorylation of BubR1 by Plk1 both in vitro and in vivo. Phosphorylation does not appear to be required for spindle checkpoint function but instead is important for the stability of kinetochore-microtubule (KT-MT) interactions, timely mitotic progression, and chromosome alignment onto the metaphase plate. By quantitative mass spectrometry, we identify S676 as a Plk1-specific phosphorylation site on BubR1. Furthermore, using a phospho-specific antibody, we show that this site is phosphorylated during prometaphase, but dephosphorylated at metaphase upon establishment of tension between sister chromatids. These findings describe the first in vivo verified phosphorylation site for human BubR1, identify Plk1 as the kinase responsible for causing the characteristic mitotic BubR1 upshift, and attribute a KT-specific function to the hyperphosphorylated form of BubR1 in the stabilization of KT-MT interactions.

294 citations


Network Information
Related Topics (5)
Chromatin
50.7K papers, 2.7M citations
86% related
Histone
28.8K papers, 1.5M citations
82% related
Mutation
45.2K papers, 2.6M citations
80% related
Gene
211.7K papers, 10.3M citations
80% related
Endoplasmic reticulum
48.3K papers, 2.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022116
202182
202087
2019113
201888