scispace - formally typeset
Search or ask a question
Topic

Methanogen

About: Methanogen is a research topic. Over the lifetime, 1146 publications have been published within this topic receiving 48254 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Aim: Bioaugumentation of low temperature biogas production was attempted by addition of cold‐adapted Clostridium and a methanogen.
Abstract: Aim Bioaugumentation of low temperature biogas production was attempted by addition of cold-adapted Clostridium and a methanogen. Methods and results A psychrotrophic xylanolytic acetogenic strain Clostridium sp. PXYL1 growing optimally at 20 degrees C and pH 5.3 and a Methanosarcina strain, PMET1, growing optimally on acetate and producing methane at 15 degrees C were isolated from a cattle manure digester. Anaerobic conversion of xylose at 15 degrees C with the coculture of the two strains was performed, and batch culture methane production characteristics indicated that methanogenesis occurred via acetate through 'acetoclastic' pathway. Stimulation studies were also undertaken to evaluate the effect of exogenous addition of the coculture on biogas yields at 15 degrees C. Addition of 3 ml of PXYL1 at the rate of 12 x 10(2) CFU ml(-1) increased the biogas 1.7-fold (33 l per kg cowdung) when compared to control (19.3 l per kg cowdung) as well as increased the volatile fatty acid (VFA) levels to 3210 mg l(-1) when compared to 1140 mg l(-1) in controls. Exogenous of addition of 10 ml PMET1 inoculum at the rate of 6.8 + or - 10(2) CFU ml(-1) in addition to PXYL1 served to further improve the biogas yields to 46 l kg(-1) as well as significantly brought down the VFA levels to 1350 mg l(-1). Conclusions Our results suggest that the rate-limiting methanogenic step at low temperatures could be overcome and that biogas yields improved by manipulating the population of the acetoclastic methanogens. Significance and impact of the study Stimulation of biomethanation at low temperature by coculture.

20 citations

Journal ArticleDOI
TL;DR: The co-occurrence analysis revealed the relative abundance of the operational taxonomic units belonging to Anaerolineae and Clostridia was functionally equivalent during the treatment of real domestic sewage, and both the HRT and the stability of the process are important factors for maintaining microbial community structures.
Abstract: Two anaerobic membrane bioreactors (AnMBRs) equipped with different membrane pore size (0.4 or 0.05 µm) were operated at 25˚C and fed with domestic wastewater. The hydraulic retention time (HRT) of the reactors was shortened. The microbial communities of the two AnMBRs were investigated by 16S rRNA gene amplicon sequencing to see the effects of HRT. The predominant Archaea was an aceticlastic methanogen Methanosaeta. The composition of hydrogenotrophic methanogens changed with the HRTs: the population of Methanobacterium was higher for longer HRTs, whereas the population of unclassified Methanoregulaceae was higher for shorter HRTs. The Anaerolineae, Bacteroidia and Clostridia bacteria were dominant in both of the reactors, with a combined relative abundance of over 55%. The relative abundance of Anaerolineae was proportional to the biogas production performance. The change in the population of hydrogenotrophic methanogens or Anaerolineae can be used as an indicator for process monitoring. The sum of the relative abundance of Anaerolineae and Clostridia fluctuated slightly with changes in the HRT in both AnMBRs when the reactor was stably operated. The co-occurrence analysis revealed the relative abundance of the operational taxonomic units belonging to Anaerolineae and Clostridia was functionally equivalent during the treatment of real domestic sewage. A principal coordination analysis revealed that the changes in the microbial community in each reactor were consistent with the change of HRT. In addition, both the HRT and the stability of the process are important factors for maintaining microbial community structures.

20 citations

Journal ArticleDOI
TL;DR: H2 availability significantly affects the CH4 and biomass production and CH4 fractionation by hyperthermophilic methanogens in their native habitats and identifies biogeochemical and molecular markers for assessing the physiological state of methanogenic and possible source of CH4 in natural environments.
Abstract: Hyperthermophilic methanogens are often H2 limited in hot subseafloor environments, and their survival may be due in part to physiological adaptations to low H2 conditions and interspecies H2 transfer. The hyperthermophilic methanogen Methanocaldococcus jannaschii was grown in monoculture at high (80 to 83 μM) and low (15 to 27 μM) aqueous H2 concentrations and in coculture with the hyperthermophilic H2 producer Thermococcus paralvinellae. The purpose was to measure changes in growth and CH4 production kinetics, CH4 fractionation, and gene expression in M. jannaschii with changes in H2 flux. Growth and cell-specific CH4 production rates of M. jannaschii decreased with decreasing H2 availability and decreased further in coculture. However, cell yield (cells produced per mole of CH4 produced) increased 6-fold when M. jannaschii was grown in coculture rather than monoculture. Relative to high H2 concentrations, isotopic fractionation of CO2 to CH4 (eCO2-CH4) was 16‰ larger for cultures grown at low H2 concentrations and 45‰ and 56‰ larger for M. jannaschii growth in coculture on maltose and formate, respectively. Gene expression analyses showed H2-dependent methylene-tetrahydromethanopterin (H4MPT) dehydrogenase expression decreased and coenzyme F420-dependent methylene-H4MPT dehydrogenase expression increased with decreasing H2 availability and in coculture growth. In coculture, gene expression decreased for membrane-bound ATP synthase and hydrogenase. The results suggest that H2 availability significantly affects the CH4 and biomass production and CH4 fractionation by hyperthermophilic methanogens in their native habitats. IMPORTANCE Hyperthermophilic methanogens and H2-producing heterotrophs are collocated in high-temperature subseafloor environments, such as petroleum reservoirs, mid-ocean ridge flanks, and hydrothermal vents. Abiotic flux of H2 can be very low in these environments, and there is a gap in our knowledge about the origin of CH4 in these habitats. In the hyperthermophile Methanocaldococcus jannaschii, growth yields increased as H2 flux, growth rates, and CH4 production rates decreased. The same trend was observed increasingly with interspecies H2 transfer between M. jannaschii and the hyperthermophilic H2 producer Thermococcus paralvinellae. With decreasing H2 availability, isotopic fractionation of carbon during methanogenesis increased, resulting in isotopically more negative CH4 with a concomitant decrease in H2-dependent methylene-tetrahydromethanopterin dehydrogenase gene expression and increase in F420-dependent methylene-tetrahydromethanopterin dehydrogenase gene expression. The significance of our research is in understanding the nature of hyperthermophilic interspecies H2 transfer and identifying biogeochemical and molecular markers for assessing the physiological state of methanogens and possible source of CH4 in natural environments.

20 citations

Journal ArticleDOI
TL;DR: The metagenomic dataset indicated the presence of genes involved in the methanogenesis and acetogenesis pathways, and the main functional genes were those of key enzymes in the meethanogenesis.
Abstract: Understanding the methanogen community structure and methanogenesis from Bubalus bubalis in India may be beneficial to methane mitigation. Our current understanding of the microbial processes leading to methane production is incomplete, and further advancement in the knowledge of methanogenesis pathways would provide means to manipulate its emission in the future. In the present study, we evaluated the methanogenic community structure in the rumen as well as their potential genes involved in methanogenesis. The taxonomic and metabolic profiles of methanogens were assessed by shotgun sequencing of rumen metagenome by Ion Torrent semiconductor sequencing. The buffalo rumen contained representative genera of all the families of methanogens. Members of Methanobacteriaceae were found to be dominant, followed by Methanosarcinaceae, Methanococcaceae, Methanocorpusculaceae, and Thermococcaceae. A total of 60 methanogenic genera were detected in buffalo rumen. Methanogens related to the genera Methanobrevibacter, Methanosarcina, Methanococcus, Methanocorpusculum, Methanothermobacter, and Methanosphaera were predominant, representing >70 % of total archaeal sequences. The metagenomic dataset indicated the presence of genes involved in the methanogenesis and acetogenesis pathways, and the main functional genes were those of key enzymes in the methanogenesis. Sequences related to CoB--CoM heterodisulfide reductase, methyl coenzyme M reductase, f420-dependent methylenetetrahydromethanopterin reductase, and formylmethanofuran dehydrogenase were predominant in rumen. In addition, methenyltetrahydrofolate cyclohydrolase, methylenetetrahydrofolate dehydrogenase, 5,10-methylenetetrahydrofolate reductase, and acetyl-coenzyme A synthetase were also recovered.

19 citations

Journal ArticleDOI
TL;DR: Mesophilic and thermophilic anaerobic digesters utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes.
Abstract: Mesophilic and thermophilic anaerobic digesters (MD and TD, respectively) utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes. During three successive transfers, the average cumulative methane yields in the MD and TD were 222.6 ± 17.3 mL CH4/g volatile solids (VS) and 246.1 ± 11 mL CH4/g VS, respectively. The higher hydrolysis rate and acidogenesis in the TD resulted in a several fold greater accumulation of volatile fatty acids (acetate, propionate, and butyrate) followed by a larger pH drop with a prolonged recovery than in the MD. However, the operational stability between both digesters remained comparable. Pyrosequencing analyses revealed that the MD had more complex microbial diversity indices and microbial community changes than the TD. Interestingly, Methanomassiliicoccales, the seventh methanogen order was the predominant archaeal order in the MD along with bacterial orders of Clostridiales, Bacteriodales, and Synergistales. Meanwhile, Coprothermobacter and Methanobacteriales dominated the bacterial and archaeal community in the TD, respectively. Although the methane yield is comparable, both MD and TD show a different profile of pH, VFA and the microbial communities.

19 citations


Network Information
Related Topics (5)
Bacteria
23.6K papers, 715.9K citations
85% related
Denitrification
23.7K papers, 663.3K citations
83% related
Biofilm
23K papers, 906.8K citations
82% related
Nitrification
14.5K papers, 470.8K citations
81% related
Operon
14.6K papers, 768.6K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202379
2022139
202189
202067
201974
201863