scispace - formally typeset
Search or ask a question
Topic

Methanogen

About: Methanogen is a research topic. Over the lifetime, 1146 publications have been published within this topic receiving 48254 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that both cellular growth and methane production were limited at low CO2 concentrations (here expressed as Dissolved Inorganic Carbon, DIC), and that the limiting concentration of DIC may be much higher than that of H2 for a hydrogenotrophic methanogen.
Abstract: Autotrophic hydrogenotrophic methanogens use H2/CO2 as sole carbon and energy source. In contrast to H2, CO2 is present in high concentrations in environments dominated by methanogens e.g. anaerobic digesters (AD), and is therefore rarely considered to be a limiting factor. Nonetheless, potential CO2 limitation can be relevant in the process of biomethanation, a power-to-gas technology, where biogas is upgraded by the addition of H2 and ideally reduce the CO2 concentration in the produced biogas to 0-6%. H2 is effectively utilized by methanogens even at very low concentrations, but little is known about the impact of unnaturally low CO2 concentrations on methanogenic activity. In this study, CO2 consumption and CH4 production kinetics under low CO2 concentrations were studied, using a hydrogenotrophic methanogen, Methanobacterium congolense, as model organism. We found that both cellular growth and methane production were limited at low CO2 concentrations (here expressed as Dissolved Inorganic Carbon, DIC). Maximum rates (Vmax) were reached at [DIC] of 100 mM (extrapolated), with a CO2 consumption rate of 69.2 fmol cell-1 d-1 and a CH4 production rate of 48.8 fmol cell-1 d-1. In our experimental setup, 80% of Vmax was achieved at [DIC] > 9 mM. DIC half-saturation concentrations (Km) was about 2.5 mM for CO2 consumption and 2.2 mM for CH4 production. No CH4 production could be detected below 44.4 µM [DIC]. These data revealed that the limiting concentration of DIC may be much higher than that of H2 for a hydrogenotrophic methanogen. However, DIC is not a limiting factor in ADs running under standard operating conditions. For biomethanation, the results are applicable for both in situ and ex situ biomethanation reactors and show that biogas can be upgraded to concentrations of 2% CO2 (98% CH4) while still retaining 80% Vmax at pH > 7.5 evaluated from M. congolense. Since DIC concentration can vary significantly with pH and pCO2 during biomethanation, monitoring DIC concentration through pH and pCO2 is therefore important for keeping optimal operational conditions for the biomethanation process.

19 citations

Journal ArticleDOI
TL;DR: A metagenomic analysis of deeply sequenced methanogenic communities allowed for comparison of taxonomic and functional diversity as well as identification of microorganisms directly involved in various stages of methanogenesis pathways, which revealed hydrogenotrophic methanogens predominated in most native communities, whereas acetoclastic Methanosaeta seemed to be the key methanogen in the wastewater treatment plant.
Abstract: Although interactions between microorganisms involved in biogas production are largely uncharted, it is commonly accepted that methanogenic Archaea are essential for the process. Methanogens thrive in various environments, but the most extensively studied communities come from biogas plants. In this study, we employed a metagenomic analysis of deeply sequenced methanogenic communities, which allowed for comparison of taxonomic and functional diversity as well as identification of microorganisms directly involved in various stages of methanogenesis pathways. A comprehensive metagenomic approach was used to compare seven environmental communities, originating from an agricultural biogas plant, cattle-associated samples, a lowland bog, sewage sludge from a wastewater treatment plant and sediments from an ancient gold mine. In addition to the native consortia, two laboratory communities cultivated on maize silage as the sole substrate were also analyzed. Results showed that all anaerobic communities harbored genes of all known methanogenesis pathways, but their abundance varied greatly between environments and that genes were encoded by different methanogens. Identification of microorganisms directly involved in different stages of methane production revealed that hydrogenotrophic methanogens, such as Methanoculleus, Methanobacterium, Methanobrevibacter, Methanocorpusculum or Methanoregula, predominated in most native communities, whereas acetoclastic Methanosaeta seemed to be the key methanogen in the wastewater treatment plant. Furthermore, in many environments, the methylotrophic pathway carried out by representatives of Methanomassiliicoccales, such as Candidatus Methanomethylophilus and Candidatus Methanoplasma, seemed to play an important role in methane production. In contrast, in stable laboratory reactors substrate versatile Methanosarcina predominated. The metagenomic approach presented in this study allowed for deep exploration and comparison of nine environments in which methane production occurs. Different abundance of methanogenesis-related functions was observed and the functions were analyzed in the phylogenetic context in order to identify microbes directly involved in methane production. In addition, a comparison of two metagenomic analytical tools, MG-RAST and MetAnnotate, revealed that combination of both allows for a precise characterization of methanogenic communities.

19 citations

Journal ArticleDOI
Hui-Zhong Wang1, Min Gou1, Yue Yi1, Zi-Yuan Xia1, Yue-Qin Tang1 
TL;DR: This study investigated the major phylogenetic groups of acetate-utilizing bacteria (AUB) in a mesophilic methanogenic chemostat fed with acetate as the sole carbon source by using DNA stable isotope probing (SIP) technology and indicated that acetoclastic meethanogenesis and acetate oxidization/hydrogenotrophic methanogenesis coexisted in the mesophiles.
Abstract: Acetate is a significant intermediate of anaerobic fermentation. There are two pathways for converting acetate to CH4 and CO2: acetoclastic methanogenesis by acetoclastic methanogens, and syntrophic acetate oxidation by acetate-oxidizing bacteria (AOB) and hydrogenotrophic methanogens. Detailed investigations of syntrophic acetate-oxidizing bacteria (SAOB) should contribute to the elucidation of the microbial mechanisms of methanogenesis. In this study, we investigated the major phylogenetic groups of acetate-utilizing bacteria (AUB) in a mesophilic methanogenic chemostat fed with acetate as the sole carbon source by using DNA stable isotope probing (SIP) technology. The results indicated that acetoclastic methanogenesis and acetate oxidization/hydrogenotrophic methanogenesis coexisted in the mesophilic chemostat fed with acetate, operated at a dilution rate of 0.1 d-1. OTU Ace13(9-17) (KU869530), Ace13(9-4) (KU667241), and Ace13(9-23) (KU667236), assigned to the phyla Firmicutes and Bacteroidetes, were probably potential SAOB in the chemostat, which needs further investigation. Species in the phyla Proteobacteria, Deferribacteres, Acidobacteria, Spirochaetes and Actinobacteria were probably capable of utilizing acetate for their growth. Methanoculleus was likely to be the preferred hydrogenotrophic methanogen for syntrophy with AOB in the chemostat.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of acetic acid and/or propionic acid on thermophilic methanogenesis of methanol as a sole substrate was studied using Methanosarcina species (MST-A1, CHTI-55 and MP).

19 citations

Journal ArticleDOI
TL;DR: It is proposed that S. propionica, a syntrophic acetate producer using propionate, might cooperate with aceticlastic methanogens for high methane production during anaerobic digestion that included propionates.

18 citations


Network Information
Related Topics (5)
Bacteria
23.6K papers, 715.9K citations
85% related
Denitrification
23.7K papers, 663.3K citations
83% related
Biofilm
23K papers, 906.8K citations
82% related
Nitrification
14.5K papers, 470.8K citations
81% related
Operon
14.6K papers, 768.6K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202379
2022139
202189
202067
201974
201863