scispace - formally typeset
Search or ask a question
Topic

Methanogen

About: Methanogen is a research topic. Over the lifetime, 1146 publications have been published within this topic receiving 48254 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A 2.8-Mb complete genome sequence of this methanogenic archaeon is reported, and it is shown that it is mesophilic H2/formate-utilizing and a representative of the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales.
Abstract: Methanoregula formicica SMSPT is a mesophilic H2/formate-utilizing methanogenic archaeon and a representative of the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales. Here, we report a 2.8-Mb complete genome sequence of this methanogenic archaeon.

14 citations

Journal ArticleDOI
01 Jan 2018
TL;DR: It is predicted that high‐fat diet‐induced obesity alters the abundance of GI methanogens and that methane may play a role in the GLP‐1 secretory response from the L cell.
Abstract: Introduction The gastrointestinal (GI) microbiome has emerged as a potential regulator of metabolism. However, the precise mechanisms of how microorganisms may influence physiology remain largely unknown. Interestingly, GI microorganisms, including methanogens, are localized within the same regions as the glucagon-like peptide-1 (GLP-1) secreting L cells. GLP-1 plays key roles appetite and glucose regulation. Furthermore, both methane and GLP-1 levels are altered in obese humans with metabolic disease. We predict that high-fat diet-induced obesity alters the abundance of GI methanogens and that methane may play a role in the GLP-1 secretory response from the L cell. Methods To demonstrate this, GLP-1 secretion response and faecal methanogens were examined in mice given a high-fat diet for 14 weeks. In addition, the direct effect of methane on GLP-1 secretion was assessed in two L-cell models (NCI-H716 and GLUTag). Results High-fat diet caused a significant increase in both GLP-1 secretion and faecal methanogen content. There was a direct correlation between GLP-1 secretion response and faecal methanogen levels. In L cells, methane stimulated GLP-1 secretion and enhanced intracellular cAMP content. Conclusion These results indicate that alterations in the methanogen communities occurring in obesity may play a vital role in directly enhancing GLP-1 secretion, and that methane can directly stimulate the secretion of GLP-1.

14 citations

Journal ArticleDOI
TL;DR: It is found that SCFA accumulation occurred with evolutional variation in methanogen with RL, resulting in a retarded methane production over a period of 20 days, but a slow methane production was only detected before the 18th day, while the concentration of acetic acid (HAc) accumulated to a peak at 2616.94 ± 310.77 mg L−1 in the presence of RL.
Abstract: Recently, bio-surfactants, like rhamnolipid (RL), have been used as efficient pre-treatments to enhance the accumulation of short-chain fatty acids (SCFAs) from waste activated sludge (WAS). The current study found that SCFA accumulation occurred with evolutional variation in methanogen with RL (0.04 g RL g−1 TSS), resulting in a retarded methane production over a period of 20 days. However, a slow methane production was only detected before the 18th day, while the concentration of acetic acid (HAc) accumulated to a peak at 2616.94 ± 310.77 mg L−1 in the presence of RL, which was 2.58-fold higher than the control assay. During the retarded methane production, the concentration of dissolved hydrogen also increased to 49.27 ± 6.02 μmol L−1, in comparison with 22.45 μmol L−1 of control WAS without RL. According to the analysis of archaea communities induced by RL, hydrogenotrophic methanogens, like Methanobrevibacter, had been substantially promoted at the beginning of quick SCFA and hydrogen production, but their percentage decreased from 70% to 35% with time. Intrinsically, the growth of acetotrophic methanogens were postponed but they contributed most to the methane production in this research according to the correlation analysis.

14 citations

Journal ArticleDOI
TL;DR: To recover energy from carbon dioxide sequestered in geological reservoirs, the geochemical effects of acidic and substrate- and nutrient-limiting conditions on methane production by the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus were investigated in a simulated deep saline aquifer environment using formation water media retrieved from petroleum reservoirs.

14 citations

Journal ArticleDOI
TL;DR: It is proposed that Methanocella methanogens cope with low H2 and syntrophic growth by stabilizing the Mvh/Hdr/Fwd complex and activating formate-dependent methanogenesis.
Abstract: Members of Methanocellales are widespread in paddy field soils and play the key role in methane production. These methanogens feature largely in these organisms' adaptation to low H2 and syntrophic growth with anaerobic fatty acid oxidizers. The adaptive mechanisms, however, remain unknown. In the present study, we determined the transcripts of 21 genes involved in the key steps of methanogenesis and acetate assimilation of Methanocella conradii HZ254, a strain recently isolated from paddy field soil. M. conradii was grown in monoculture and syntrophically with Pelotomaculum thermopropionicum (a propionate syntroph) or Syntrophothermus lipocalidus (a butyrate syntroph). Comparison of the relative transcript abundances showed that three hydrogenase-encoding genes and all methanogenesis-related genes tested were upregulated in cocultures relative to monoculture. The genes encoding formylmethanofuran dehydrogenase (Fwd), heterodisulfide reductase (Hdr), and the membrane-bound energy-converting hydrogenase (Ech) were the most upregulated among the evaluated genes. The expression of the formate dehydrogenase (Fdh)-encoding gene also was significantly upregulated. In contrast, an acetate assimilation gene was downregulated in cocultures. The genes coding for Fwd, Hdr, and the D subunit of F420-nonreducing hydrogenase (Mvh) form a large predicted transcription unit; therefore, the Mvh/Hdr/Fwd complex, capable of mediating the electron bifurcation and connecting the first and last steps of methanogenesis, was predicted to be formed in M. conradii. We propose that Methanocella methanogens cope with low H2 and syntrophic growth by (i) stabilizing the Mvh/Hdr/Fwd complex and (ii) activating formate-dependent methanogenesis.

14 citations


Network Information
Related Topics (5)
Bacteria
23.6K papers, 715.9K citations
85% related
Denitrification
23.7K papers, 663.3K citations
83% related
Biofilm
23K papers, 906.8K citations
82% related
Nitrification
14.5K papers, 470.8K citations
81% related
Operon
14.6K papers, 768.6K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202379
2022139
202189
202067
201974
201863