scispace - formally typeset
Search or ask a question
Topic

Methanogen

About: Methanogen is a research topic. Over the lifetime, 1146 publications have been published within this topic receiving 48254 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of divalent metal ions on biomethanation was studied using pre-reduced methanogenic AC21 medium in absence or in presence of leaf or root extracts of Eichornia grassipes (water hyacinth) in vitro.
Abstract: The effect of divalent metal ions on biomethanation was studied using pre-reduced methanogenic AC21 medium in absence or in presence of leaf or root extracts of Eichornia grassipes (water hyacinth) in vitro. The metal ions like Cu2+, Fe2+, Ni2+, and Co2+ were found to be effective in increasing methane production in vitro at low concentrations, but toxic inhibitory effects were observed at relatively high concentrations. Zn2+ ion was inhibitory in character with exceptions. The bioavailability of metal ions in AC21 medium alone or with juices from leaf or root extracts of plant (water hyacinth in the present case) was limited due to complex formation of metal ions with different constituents in the medium, precipitation, etc. However, the results of the microscopic experiments (in vials) with metal ions for methane production by isolated methanogens in the methanogenic medium should not be compared with the conversion of biomass to methane in biodigesters. In such cases, not only a large number of methanogenic bacteria of different strains but also a consortium of bacteria of different specificities is usually involved. Though the biomass may contain sufficient concentrations of metal ions, it is advisable to add metal ions like Cu2+, Fe2+ , Zn 2+ ,Co2+, etc. in the biomass, but the concentrations of the metal ions should be limited to 10–20 µM of the biomass to make methane generation successful.

13 citations

Journal Article
TL;DR: Diverse yet unidentified rumen methanogen species exist in the co-cultures with anaerobic fungi isolated from the goat rumen, with the lowest similarity of DGGE profiles at 34.7%.
Abstract: Rumen methanogen diversity in the co-cultures with anaerobic fungi from goat rumen was analyzed. Mix-cultures of anaerobic fungi and methanogens were obtained from goat rumen using anaerobic fungal medium and the addition of penicillin and streptomycin and then subcultured 62 times by transferring cultures every 3 - 4d. Total DNA from the original rumen fluid and subcultured fungal cultures was used for PCR/DGGE and RFLP analysis. 16S rDNA of clones corresponding to representative OTUs were sequenced. Results showed that the diversity index (Shannon index) of the methanogens generated from DGGE profiles reduced from 1.32 to 0.99 from rumen fluid to fungal culture after 45 subculturing, with the lowest similarity of DGGE profiles at 34.7%. The Shannon index increased from 0.99 to 1.15 from the fungal culture after 45 subculturing to that after 62 subculturing, with the lowest similarity at 89.2% . A total of 5 OTUs were obtained from 69. clones using RFLP analysis and six clones representing the 5 OTUs respectively were sequenced. Of the 5 OTUs, three had their cloned 16S rDNA sequences most closely related to uncultured archaeal symbiont PA202 with the same similarity of 95 %, but had not closely related to any identified culturable methanogen. The rest two OTUs had their cloned 16S rDNA sequences sharing the same closest relative, uncultured rumen methanogen 956, with the same similarity of 97% .Their 16S rDNA sequences of these two OTUs also showed 97% similar to the closest identified culturable methanogen Methanobrevibacter sp. NT7. In conclusion, diverse yet unidentified rumen methanogen species exist in the co-cultures with anaerobic fungi isolated from the goat rumen.

13 citations

Journal ArticleDOI
TL;DR: A rapid multiplex method to detect the relative abundances of amplified 16S rRNA genes from known cultivatable methanogens at hierarchical specificities in anaerobic digestion systems treating industrial wastewater and sewage sludge demonstrated that the HOPE approach is a specific, rapid, and multiplexing platform.
Abstract: In this study, we established a rapid multiplex method to detect the relative abundances of amplified 16S rRNA genes from known cultivatable methanogens at hierarchical specificities in anaerobic digestion systems treating industrial wastewater and sewage sludge. The method was based on the hierarchical oligonucleotide primer extension (HOPE) technique and combined with a set of 27 primers designed to target the total archaeal populations and methanogens from 22 genera within 4 taxonomic orders. After optimization for their specificities and detection sensitivity under the conditions of multiple single-nucleotide primer extension reactions, the HOPE approach was applied to analyze the methanogens in 19 consortium samples from 7 anaerobic treatment systems (i.e., 513 reactions). Among the samples, the methanogen populations detected with order-level primers accounted for >77.2% of the PCR-amplified 16S rRNA genes detected using an Archaea-specific primer. The archaeal communities typically consisted of 2 to 7 known methanogen genera within the Methanobacteriales, Methanomicrobiales, and Methanosarcinales and displayed population dynamic and spatial distributions in anaerobic reactor operations. Principal component analysis of the HOPE data further showed that the methanogen communities could be clustered into 3 distinctive groups, in accordance with the distribution of the Methanosaeta, Methanolinea, and Methanomethylovorans, respectively. This finding suggested that in addition to acetotrophic and hydrogenotrophic methanogens, the methylotrophic methanogens might play a key role in the anaerobic treatment of industrial wastewater. Overall, the results demonstrated that the HOPE approach is a specific, rapid, and multiplexing platform to determine the relative abundances of targeted methanogens in PCR-amplified 16S rRNA gene products.

13 citations

Journal ArticleDOI
TL;DR: The band patterns revealed by denaturing gradient gel electrophoresis of the microbial communities in the two chemostats displayed marked changes during long-term operation at a constant dilution rate, and was erratic during longterm operation in both glucose-fed and starch-fed che mostats.
Abstract: The microbial community structures of two mesophilic anaerobic chemostats, one fed with glucose, the other with starch as sole carbon sources, were studied at various dilution rates (0.05–0.25 d–1 for glucose and 0.025–0.1 d–1 for starch) during two years continuous operation. In the glucose-fed chemostat, the aceticlastic methanogen Methanosaeta spp. and hydrogenotrophic methanogen Methanoculleus spp. predominated at low dilution rates, whereas Methanosaeta spp. and the hydrogenotrophic Methanobacterium spp. predominated together when dilution rates were greater than 0.1 d–1. Bacteria affiliated with the phyla Bacteroidetes, Spirochaetes, and Actinobacteria predominated at dilution rates of 0.05, 0.1, and 0.15 d–1, respectively, while Firmicutes predominated at higher dilution rates (0.2 and 0.25 d–1). In the starch-fed chemostat, the aceticlastic and hydrogenotrophic methanogens coexisted at all dilution rates. Although bacteria belonging to only two phyla were mainly responsible for starch degradation (Spirochaetes at the dilution rate of 0.08 d–1 and Firmicutes at other dilution rates), different bacterial genera were identified at different dilution rates. With the exception of Archaea in the glucose-fed chemostat, the band patterns revealed by denaturing gradient gel electrophoresis (DGGE) of the microbial communities in the two chemostats displayed marked changes during long-term operation at a constant dilution rate. The bacterial community changed with changes in the dilution rate, and was erratic during longterm operation in both glucose-fed and starch-fed chemostats.

13 citations

Patent
08 Nov 2006
TL;DR: In this paper, the authors proposed a method of co-producing hydrogen and methane with biomass and solid organic waste and through fermentation, which includes pyruvic acid, short chain fatty acid and small amount of H2 and CO2.
Abstract: The present invention relates to hydrogen and methane producing method and especially method of co-producing hydrogen and methane with biomass and solid organic waste and through fermentation. The method includes hydrolyzing and acidifying biomass and solid organic waste to produce pyruvic acid, short chain fatty acid and small amount of H2 and CO2; fermenting the mixture of pyruvic acid and short chain fatty acid under the action of fermenting hydrogenogen to produce great amount of hydrogen as well as small molecular weight side products ethanol, acetic acid, propionic acid and butyric acid; and further fermenting to convert the small molecular weight side products into methane under the action of methanogen. The apparatus can treat waste effectively to produce clean energy source material, and has high energy source converting rate and high matrix utilizing rate.

13 citations


Network Information
Related Topics (5)
Bacteria
23.6K papers, 715.9K citations
85% related
Denitrification
23.7K papers, 663.3K citations
83% related
Biofilm
23K papers, 906.8K citations
82% related
Nitrification
14.5K papers, 470.8K citations
81% related
Operon
14.6K papers, 768.6K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202379
2022139
202189
202067
201974
201863