scispace - formally typeset
Search or ask a question
Topic

Methanosarcina barkeri

About: Methanosarcina barkeri is a research topic. Over the lifetime, 703 publications have been published within this topic receiving 32151 citations.


Papers
More filters
Posted ContentDOI
31 May 2018-bioRxiv
TL;DR: Experimental validation of H2 cycling adds to a short list of mechanisms for generating a transmembrane electrochemical gradient that is likely to be widespread, especially among anaerobic microorganisms.
Abstract: Energy conservation via hydrogen cycling, which generates proton motive force by intracellular H2 production coupled to extracellular consumption, has been controversial since it was first proposed in 1981. It was hypothesized that the methanogenic archaeon Methanosarcina barkeri is capable of energy conservation via H2 cycling, based on genetic data that suggest H2 is a preferred, but non-essential, intermediate in the electron transport chain of this organism. Here, we characterize a series of hydrogenase mutants to provide direct evidence of H2 cycling. M. barkeri produces H2 during growth on methanol, a phenotype that is lost upon mutation of the cytoplasmic hydrogenase encoded by frhADGB, although low levels of H2, attributable to the Ech hydrogenase, accumulate during stationary phase. In contrast, mutations that conditionally inactivate the extracellular Vht hydrogenase are lethal when expression of the vhtGACD operon is repressed. Under these conditions H2 accumulates, with concomitant cessation of methane production and subsequent cell lysis, suggesting that the inability to recapture extracellular H2 is responsible for the lethal phenotype. Consistent with this interpretation, double mutants that lack both Vht and Frh are viable. Thus, when intracellular hydrogen production is abrogated, loss of extracellular H2 consumption is no longer lethal. The common occurrence of both intracellular and extracellular hydrogenases in anaerobic microorganisms suggests that this unusual mechanism of energy conservation may be widespread in nature. Importance: Adenosine triphosphate (ATP) is required by all living organisms to facilitate essential endergonic reactions required for growth and maintenance. Although synthesis of ATP by substrate-level phosphorylation is widespread and significant, most ATP is made via the enzyme ATP synthase, which is energized by transmembrane chemiosmotic gradients. Therefore, establishing this gradient across the membrane is of central importance to sustaining life. Experimental validation of H2 cycling adds to a short list of mechanisms for generating a transmembrane electrochemical gradient that is likely to be widespread, especially among anaerobic microorganisms.

4 citations

Journal ArticleDOI
TL;DR: In this paper , DNA-stable isotope probing (SIP) coupled with metagenomic-binning was used to identify microorganisms responsible for V(V) reduction and determine potential metabolic mechanisms in cultures inoculated with a V-contaminated river sediment.

4 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that both methyl groups are removed from tri-, diand monomethylamine during methanogenesis and that ethylamine is a product.
Abstract: Compounds such as tri-, diand monomethylamine have been shown to serve as growth substrates for Methanosarc ina barkeri [1,2]. The products formed from these compounds are methane, carbon dioxide and ammonia. Dimethylethylamine has also been reported to serve as growth substrate for M. barkeri [1], but its fate in this fermentation has not been studied. Here we show that both methyl groups are removed from that compound during methanogenesis and that ethylamine is a product.

4 citations

Journal ArticleDOI
TL;DR: The conversion of lactose — the main constituent of whey — to methane and carbon dioxide was studied using different defined constructed cultures, imploying strains of Methanosarcina barkeri, Methanobacteria bryantii, Escherichia coli, Acetobacterium woodii, Lactobacillus casei, and LactOBacillus plantarum.
Abstract: The conversion of lactose — the main constituent of whey — to methane and carbon dioxide was studied using different defined constructed cultures, imploying strains of Methanosarcina barkeri, Methanobacterium bryantii, Escherichia coli, Acetobacterium woodii, Lactobacillus casei, and Lactobacillus plantarum. The following combinations of strains (food chains) were studied with respect to efficiency and yield of lactose conversion (methane yield in parentheses): E. coli and M. barkeri (4.5–7.6%), E. coli and M. bryantii (13.3%),E. coli, M. barkeri and M. bryantii (54%), L. casei, A. woodii and M. barkeri (93.3%). These conversions were carried out in pH controlled batch fermentations. A very efficient coculture was a combination of L. plantarum with A. woodii and M. barkeri: in chemostat cultures lactose was converted to methane and carbon dioxide with a yield of about 90%, at dilution rates of 0.27 d-1to 0.37 d-1.

4 citations


Network Information
Related Topics (5)
Operon
14.6K papers, 768.6K citations
86% related
Peptidoglycan
6.7K papers, 315.3K citations
85% related
Periplasmic space
6.6K papers, 328.8K citations
84% related
Bacillus subtilis
19.6K papers, 539.4K citations
82% related
Escherichia coli
59K papers, 2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202212
202112
202012
20197
201818