scispace - formally typeset
Search or ask a question
Topic

Methanosarcina barkeri

About: Methanosarcina barkeri is a research topic. Over the lifetime, 703 publications have been published within this topic receiving 32151 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that TCP is uniquely involved in TMA-dependent methanogenesis, that this corrinoid protein is methylated by the substrate and demethylated by either isozyme of MT2, and that the predominantisozyme ofMT2 found in T MA-grown cells is the favored participant in the TMA:CoM methyl transfer reaction.
Abstract: Reconstitution of trimethylamine-dependent coenzyme M (CoM) methylation was achieved with three purified polypeptides. Two of these polypeptides copurified as a trimethylamine methyl transfer (TMA-MT) activity detected by stimulation of the TMA:CoM methyl transfer reaction in cell extracts. The purified TMA-MT fraction stimulated the rate of methyl-CoM formation sevenfold, up to 1.7 micromol/min/mg of TMA-MT protein. The TMA-MT polypeptides had molecular masses of 52 and 26 kDa. Gel permeation of the TMA-MT fraction demonstrated that the 52-kDa polypeptide eluted with an apparent molecular mass of 280 kDa. The 26-kDa protein eluted primarily as a monomer, but some 26-kDa polypeptides also eluted with the 280-kDa peak, indicating that the two proteins weakly associate. The two polypeptides could be completely separated using gel permeation in the presence of sodium dodecyl sulfate. The corrinoid remained associated with the 26-kDa polypeptide at a molar ratio of 1.1 corrin/26-kDa polypeptide. This polypeptide was therefore designated the TMA corrinoid protein, or TCP. The TMA-MT polypeptides, when supplemented with purified methylcorrinoid:CoM methyltransferase (MT2), could effect the demethylation of TMA with the subsequent methylation of CoM and the production of dimethylamine at specific activities of up to 600 nmol/min/mg of TMA-MT protein. Neither dimethylamine nor monomethylamine served as the substrate, and the activity required Ti(III) citrate and methyl viologen. TMA-MT could interact with either isozyme of MT2 but had the greatest affinity for the A isozyme. These results suggest that TCP is uniquely involved in TMA-dependent methanogenesis, that this corrinoid protein is methylated by the substrate and demethylated by either isozyme of MT2, and that the predominant isozyme of MT2 found in TMA-grown cells is the favored participant in the TMA:CoM methyl transfer reaction.

91 citations

Journal ArticleDOI
TL;DR: The data indicate that the isotopic exchange between CO2 and the carboxyl group of acetate is a partial reaction of methanogenesis from acetate, and proposed mechanisms of methane and CO2 formation from acetates are discussed.
Abstract: Cell suspensions of Methanosarcina barkeri (strain Fusaro) grown on acetate were found to catalyze the formation of methane and CO2 from acetate (30–40 nmol/min·mg protein) and an isotopic exchange between the carboxyl group of acetate and 14CO2 (30–40 nmol/min·mg protein). An isotopic exchange between [14C]-formate and acetate was not observed. Cells grown on methanol mediated neither methane formation from acetate nor the exchange reactions. The data indicate that the isotopic exchange between CO2 and the carboxyl group of acetate is a partial reaction of methanogenesis from acetate. Both reactions were completely inhibited by low concentrations of cyanide (20 μM) or of hydrogen (0.5% in the gas phase). Methane formation from acetate was also completely inhibited by low concentrations of carbon monoxide (0.2% in the gas phase) whereas only significantly higher concentrations of CO had an effect on the exchange reaction. In the concentration range tested KCN, H2 and CO had no effect on methane formation from methanol or from H2 and CO2; however, cyanide (20 μM) also affected methane formation from CO. The results are discussed with respect to proposed mechanisms of methane and CO2 formation from acetate.

88 citations

Journal ArticleDOI
TL;DR: The results indicate that in acetate-grown M. barkeri the free-energy change associated with the formation of CO2 and H2 from CO andH2O can be used to drive the phosphorylation of ADP and that the coupling proceeds via a chemiosmotic mechanism.
Abstract: Cell suspensions of Methanosarcina barkeri, grown on acetate, catalyzed the conversion of carbon monoxide and H2O to CO2 and H2 in stoichiometric amounts when methane formation was inhibited by bromoethanesulfonate. The specific activity was 80-120 nmol min-1 mg protein-1 at 5% CO in the gas phase. CO oxidation was coupled with the phosphorylation of ADP as indicated by a rapid increase of the intracellular ATP level upon start of the reaction. At least 0.1 mol ATP was formed/mol CO consumed. The onset of CO oxidation was also accompanied by an increase of the proton motive force (delta p) from 100 mV to 150 mV (inside negative). Addition of the uncoupler tetrachlorosalicylanilide to CO-metabolizing cells led to a rapid decrease of the ATP level and of delta p, and to an increase of the CO oxidation rate up to 70%. In the presence of the proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide the phosphorylation of ADP was inhibited and CO oxidation slowed down, whereas delta p was almost unaffected. Inhibition of CO oxidation under these conditions was relieved by the addition of the protonophore tetrachlorosalicylanilide. The results indicate that in acetate-grown M. barkeri the free-energy change associated with the formation of CO2 and H2 from CO and H2O (delta G degrees = -20 kJ/mol) can be used to drive the phosphorylation of ADP and that the coupling proceeds via a chemiosmotic mechanism. A possible role of the carbon monoxide oxidation reaction as an energy-conserving site in acetate fermentation to CH4 and CO2 is discussed.

88 citations

Journal ArticleDOI
TL;DR: Direct CO2-to-CH4 conversion was realized by an innovative biohybrid consisting of semiconductor nanoparticles and non-phototrophic methanogens and photoactive CdS nanoparticles, with Membrane-bound proteins found to play a key role in the photoelectron transfer.
Abstract: Semi-artificial photosynthesis has emerged as a promising approach to convert carbon dioxide to value-added chemicals. Herein, direct CO2-to-CH4 conversion was realized by an innovative biohybrid consisting of semiconductor nanoparticles and non-phototrophic methanogens. The interaction between a model methanogen Methanosarcina barkeri and photoactive CdS nanoparticles achieved a CH4 production rate of 0.19 μmol/h with a quantum efficiency of 0.34%, comparable to that of plants or algae. The M. barkeri-CdS biohybrid exhibited a higher electrical conductivity than M. barkeri only and generated photocurrent in response to irradiation. The simultaneous increase of mcrA gene copies by 151.4% illustrated the robustness of this M. barkeri-CdS biohybrid. Membrane-bound proteins were found to play a key role in the photoelectron transfer. The CO2-to-CH4 conversion was possibly conducted with photoelectrons from the e−-h+ separation via the H2ases-mediated and cytochromes-mediated pathways. The findings encourage further exploration of the solar-driven self-replicating biocatalytic system to achieve CO2-to-CH4 conversion.

87 citations

Journal ArticleDOI
TL;DR: A microbial food chain is proposed for lactose biomethanation that comprises multiple species in three different groups, with the major hydrogen-producing acetogen being a sulfate-reducing species, D. vulgaris, which functioned in the absence of significant levels of environmental sulfate.
Abstract: The organization and species composition of bacterial trophic groups associated with lactose biomethanation were investigated in a whey-processing chemostat by enumeration, isolation, and general characterization studies. The bacteria were spatially organized as free-living forms and as self-immobilized forms appearing in flocs. Three dominant bacterial trophic group populations were present (in most probable number per milliliter) whose species numbers varied with the substrate consumed: hydrolytic, 10; acetogenic, 10 to 10; and methanogenic, 10 to 10. The three prevalent species utilizing lactose were identified as Leuconostoc mesenteroides, Klebsiella oxytoca, and Clostridium butyricum. Clostridium propionicum and Desulfovibrio vulgaris were the dominant lactate-consuming, hydrogen-producing acetogenic bacteria, while D. vulgaris was the only significant ethanol-degrading species. Methanosarcina barkeri and Methanothrix soehngenii were identified as the dominant acetate-utilizing methanogens, and Methanobacterium formicicum was the prevalent hydrogen-utilizing methanogen. A microbial food chain is proposed for lactose biomethanation that comprises multiple species in three different groups, with the major hydrogen-producing acetogen being a sulfate-reducing species, D. vulgaris, which functioned in the absence of significant levels of environmental sulfate.

87 citations


Network Information
Related Topics (5)
Operon
14.6K papers, 768.6K citations
86% related
Peptidoglycan
6.7K papers, 315.3K citations
85% related
Periplasmic space
6.6K papers, 328.8K citations
84% related
Bacillus subtilis
19.6K papers, 539.4K citations
82% related
Escherichia coli
59K papers, 2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202212
202112
202012
20197
201818