scispace - formally typeset
Search or ask a question
Topic

Methanosarcina barkeri

About: Methanosarcina barkeri is a research topic. Over the lifetime, 703 publications have been published within this topic receiving 32151 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is argued that N-ATPases are an early-diverging branch of membrane ATPases that, similarly to the eukaryotic V-type ATPases, do not synthesize ATP.
Abstract: An analysis of the distribution of the Na+-translocating ATPases/ATP synthases among microbial genomes identified an atypical form of the F1Fo-type ATPase that is present in the archaea Methanosarcina barkeri and M.acetivorans, in a number of phylogenetically diverse marine and halotolerant bacteria and in pathogens Burkholderia spp. In complete genomes, representatives of this form (referred to here as N-ATPase) are always present as second copies, in addition to the typical proton-translocating ATP synthases. The N-ATPase is encoded by a highly conserved atpDCQRBEFAG operon and its subunits cluster separately from the equivalent subunits of the typical F-type ATPases. N-ATPase c subunits carry a full set of sodium-binding residues, indicating that most of these enzymes are Na+-translocating ATPases that likely confer on their hosts the ability to extrude Na+ ions. Other distinctive properties of the N-ATPase operons include the absence of the delta subunit from its cytoplasmic sector and the presence of two additional membrane subunits, AtpQ (formerly gene 1) and AtpR (formerly gene X). We argue that N-ATPases are an early-diverging branch of membrane ATPases that, similarly to the eukaryotic V-type ATPases, do not synthesize ATP. Contact:galperin@ncbi.nlm.nih.gov; amulkid@uos.de Supplementary information: Supplementary data are available at Bioinformatics online.

72 citations

Journal ArticleDOI
TL;DR: A 6kilobase-pair (kbp) region of the genome of the extremely thermophilic arachaebacterium Methanothermus fervidus which encodes the alpha, beta, and gamma subunit polypeptides of component C of methyl coenzyme M reductase was cloned and sequenced as mentioned in this paper.
Abstract: A 6-kilobase-pair (kbp) region of the genome of the extremely thermophilic arachaebacterium Methanothermus fervidus which encodes the alpha, beta, and gamma subunit polypeptides of component C of methyl coenzyme M reductase was cloned and sequenced. Genes encoding the beta (mcrB) and gamma (mcrG) subunits were separated by two open reading frames (designated mcrC and mcrD) which encode unknown gene products. The M. fervidus genes were preceded by ribosome-binding sites, separated by short A + T-rich intergenic regions, contained unexpectedly few NNC codons, and exhibited inflexible codon usage at some locations. Sites of transcription initiation and termination flanking the mcrBDCGA cluster of genes in M. fervidus were identified. The sequences of the genes, the encoded polypeptides, and transcription regulatory signals in M. fervidus were compared with the functionally equivalent sequences from two mesophilic methanogens (Methanococcus vannielii and Methanosarcina barkeri) and from a moderate thermophile (Methanobacterium thermoautotrophicum Marburg). The amino acid sequences of the polypeptides encoded by the mcrBCGA genes in the two thermophiles were approximately 80% identical, whereas all other pairs of these gene products contained between 50 and 60% identical amino acid residues. The mcrD gene products have diverged more than the products of the other mcr genes. Identification of highly conserved regions within mcrA and mcrB suggested oligonucleotide sequences which might be developed as hybridization probes which could be used for identifying and quantifying all methanogens.

72 citations

Journal ArticleDOI
TL;DR: Phylogenetic analysis of the deduced amino acid sequences of the nifH ORFs from M. barkeri showed that nif h1 clusters with nif H genes from alternative nitrogenases, while nifh2 clusters withNifH1 from the gram-positive eubacterium Clostridium pasteurianum, most likely representing a distinct nif gene family.
Abstract: L. Sibold, M. Henriquet, O. Possot, and J.-P. Aubert (Res. Microbiol. 142:5-12, 1991) cloned and sequenced two nifH-homologous open reading frames (ORFs) from Methanosarcina barkeri 227. Phylogenetic analysis of the deduced amino acid sequences of the nifH ORFs from M. barkeri showed that nifH1 clusters with nifH genes from alternative nitrogenases, while nifH2 clusters with nifH1 from the gram-positive eubacterium Clostridium pasteurianum. The N-terminal sequence of the purified nitrogenase component 2 (the nifH gene product) from M. barkeri was identical with that predicted for nifH2, and dot blot analysis of RNA transcripts indicated that nifH2 (and nifDK2) was expressed in M. barkeri when grown diazotrophically in Mo-containing medium. To obtain nifD2 from M. barkeri, a 4.7-kbp BamHI fragment of M. barkeri DNA was cloned which contained at least five ORFs, including nifH2, ORF105, and ORF125 (previously described by Sibold et al.), as well as nifD2 and part of nifK2. ORFnifD2 is 1,596 bp long and encodes 532 amino acid residues, while the nifK2 fragment is 135 bp long. The deduced amino acid sequences for nifD2 and the nifK2 fragment from M. barkeri cluster most closely with the corresponding nifDK1 gene products from C. pasteurianum. The predicted M. barkeri nifD2 product contains a 50-amino acid insert near the C terminus which has previously been found only in the clostridial nifD1 product. Previous biochemical and sequencing evidence indicates that the C. pasteurianum nitrogenase is the most divergent of known eubacterial Mo-nitrogenases, most likely representing a distinct nif gene family, which now also contains M. barkeri as a member. The similarity between the methanogen and clostridial nif sequences is especially intriguing in light of the recent findings of sequence similarities between gene products from archaea and from low-G+C gram-positive eubacteria for glutamate dehydrogenase, glutamine synthetase I, and heat shock protein 70. It is not clear whether this similarity is due to horizontal gene transfer or to the resemblance of the M. barkeri and C. pasteurianum nitrogenase sequences to an ancestral nitrogenase.

71 citations

Journal ArticleDOI
TL;DR: Evidence is presented that CO oxidation by the cells is associated with the transient acidification of the suspension medium and the coupling of CO oxidation with ADP phosphorylation in M. barkeri occurs via a chemiosmotic mechanism.
Abstract: Cell suspensions of acetate-grown Methanosarcina barkeri mediate the conversion of CO and H2O to CO2 and H2. The reaction is coupled with the phosphorylation of ADP. Evidence is presented that CO oxidation by the cells is associated with the transient acidification of the suspension medium. Up to 2 mol vectorial protons were measured/mol CO oxidized when the transmembrane electrical gradient was kept low by the addition of valinomycin (20 nmol/mg protein) and KCl (200 mM) or of KSCN (50 mM). No transient acidification was observed in the presence of the protonophore tetrachlorosalicylanilide which stimulated rather than inhibited CO oxidation. Proton extrusion remained unaltered when the proton-translocating ATPase was specifically inhibited by dicyclohexylcarbodiimide. The latter finding indicates that proton translocation is associated with CO conversion to CO2 and H2 rather than with ATP hydrolysis in the cells. The data substantiate that the coupling of CO oxidation with ADP phosphorylation in M. barkeri occurs via a chemiosmotic mechanism.

70 citations

Journal ArticleDOI
TL;DR: The head piece of the A-type ATP synthase in an extremely halophilic archaebacterium, namely Halobacterium salinarium (halobium), is composed of two kinds of subunit, alpha and beta, and is associated with ATP-hydrolyzing activity, which confirms the first demonstration of this kind of relationship by immunoblotting with an antibody raised against the halobacteria.

69 citations


Network Information
Related Topics (5)
Operon
14.6K papers, 768.6K citations
86% related
Peptidoglycan
6.7K papers, 315.3K citations
85% related
Periplasmic space
6.6K papers, 328.8K citations
84% related
Bacillus subtilis
19.6K papers, 539.4K citations
82% related
Escherichia coli
59K papers, 2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202212
202112
202012
20197
201818