scispace - formally typeset
Search or ask a question
Topic

Methyl isobutyl ketone

About: Methyl isobutyl ketone is a research topic. Over the lifetime, 2071 publications have been published within this topic receiving 26976 citations. The topic is also known as: Hexone & Isobutyl methyl ketone.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source, and that P. chrysosporium was able to degrade all V OCs tested except for styrene under the conditions imposed.
Abstract: Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids ( n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxiiproduced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application.

98 citations

Journal ArticleDOI
TL;DR: In this paper, the condensation and selective hydrogenation of acetone to methyl isobutyl ketone (MIBK) was studied on a directly comparable series of 0.1-1.5-wt% Pd and Pt catalysts supported on hydrotalcite (HT)-derived Mg Al mixed-oxides in a liquid-phase batch micro-reactor at 99-153-°C and 400-psig.
Abstract: The condensation and selective hydrogenation of acetone to methyl isobutyl ketone (MIBK) was studied on a directly comparable series of 0.1–1.5 wt% Pd and Pt catalysts supported on hydrotalcite (HT)-derived Mg Al mixed-oxides in a liquid-phase batch micro-reactor at 99–153 °C and 400 psig. The support catalyzes the condensation of acetone to diacetone alcohol (DAA) and its subsequent dehydration to mesityl oxide (MO); Pd and Pt catalyze the selective hydrogenation of MO to MIBK. The net yield of MIBK is independent of metal type and loading, depending only on the wt% of exposed metal. However, the by-products are quite different-Pt/HT is more selective for the direct hydrogenation to isopropanol (IPA) while Pd/HT forms more of the intermediate diacetone alcohol (DAA). Among the Pd- and Pt-based catalysts examined, the 0.1 wt% Pd/HT gives the maximum MIBK yield of ∼32%, with an unusually low selectivity to IPA, 0.6 mol% compared to 15 mol% for the next best catalyst. This appears to be due to its higher basicity, and (to a lesser extent) to its minimal concentration of metal sites. This metal loading is sufficient to fully hydrogenate mesityl oxide to MIBK, and it also shows minimal acetone hydrogenation to isopropanol. A study of physically mixed Pd/silica + HT versus Pd/HT shows that the acid/base and hydrogenation functions need not be molecularly close.

95 citations

Journal ArticleDOI
TL;DR: The relationships between IL structure, polymeric structure and depolymerization efficiency were established, shedding light on the in-depth catalytic mechanism of IL, inclusive of acidity and hydrogen bonding ability.

93 citations

Journal ArticleDOI
01 Jan 2015-Fuel
TL;DR: In this paper, a series of water-tolerant porous niobium phosphate solid acid catalysts were hydrothermal synthesized using cetyltrimethyl ammonium bromide (CTAB) as the template.

93 citations

Journal ArticleDOI
TL;DR: This review provides a state-of-the-science analysis of materials used as the selective layer(s) of PV/VP membranes in removing water from organic solvents.
Abstract: Organic solvents are widely used in a variety of industrial sectors. Reclaiming and reusing the solvents may be the most economically and environmentally beneficial option for managing spent solvents. Purifying the solvents to meet reuse specifications can be challenging. For hydrophilic solvents, water must be removed prior to reuse, yet many hydrophilic solvents form hard-to-separate azeotropic mixtures with water. Such mixtures make separation processes energy intensive and cause economic challenges. The membrane processes pervaporation (PV) and vapor permeation (VP) can be less energy intensive than distillation-based processes and have proven to be very effective in removing water from azeotropic mixtures. In PV/VP, separation is based on the solution-diffusion interaction between the dense permselective layer of the membrane and the solvent/water mixture. This review provides a state-of-the-science analysis of materials used as the selective layer(s) of PV/VP membranes in removing water from organic solvents. A variety of membrane materials, such as polymeric, inorganic, mixed matrix, and hybrid, have been reported in the literature. A small subset of these are commercially available and highlighted here: poly(vinyl alcohol), polyimides, amorphous perfluoro polymers, NaA zeolites, chabazite zeolites, T-type zeolites, and hybrid silicas. The typical performance characteristics and operating limits of these membranes are discussed. Solvents targeted by the U.S. Environmental Protection Agency for reclamation are emphasized and ten common solvents are chosen for analysis: acetonitrile, 1-butanol, N,N-dimethyl formamide, ethanol, methanol, methyl isobutyl ketone, methyl tert-butyl ether, tetrahydrofuran, acetone, and 2-propanol.

93 citations


Network Information
Related Topics (5)
Sorption
45.8K papers, 1.3M citations
82% related
Adsorption
226.4K papers, 5.9M citations
81% related
Aqueous solution
189.5K papers, 3.4M citations
81% related
Nickel
79.3K papers, 1.2M citations
78% related
Ionic liquid
57.2K papers, 1.6M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202314
202230
202137
202045
201972
201872